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Abstract

Standard classifications obscure which jobs directly drive emissions cuts. Using

U.S. online vacancies data, we develop a transparent, skill-based approach that

identifies low-carbon roles within occupations, leveraging NLP and text linked to

established green classifications. We show that, even within the same occupation

and firm, low-carbon jobs systematically demand more, and more diverse, skills than

non-low-carbon jobs. Within-occupation differences account for much of the overall

gap, implying occupation-level studies understate it. The transition thus requires

substantial retraining within existing occupations, even if not biased towards high-

skilled workers. Reskilling needs are highly occupation-specific. Returns to skill

complexity are higher in low-carbon roles, yet the green wage premium is positive

but modest and declining after controlling for occupation and firm heterogeneity.

Low-carbon jobs are more geographically dispersed than high-carbon ones but more

prevalent in wealthier areas, implying reallocation frictions and equity concerns.

Our evidence supports targeted reskilling policies to support a just transition.
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1 Introduction
In parallel with the ongoing technological advancements in digitization and artificial in-

telligence (Autor et al., 2003; Acemoglu and Autor, 2011), the energy transition is reshap-

ing labor markets by reallocating workers toward low-carbon activities while potentially

displacing skills used in high-carbon activities. The anticipation of significant job real-

locations under ambitious decarbonization scenarios (Hafstead and Williams III, 2018;

Castellanos and Heutel, 2024) and concerns over skill and spatial mismatches that may

jeopardize climate goals, compounded by persistent opposition from fossil fuel lobbies

citing job losses (Vona, 2019; Weber, 2020), have spurred policymakers and researchers

to better understand labor market adjustments to the low-carbon transition (IMF, 2022;

OECD, 2023; EBRD, 2023). A key aspect for political acceptability is the quality of low-

carbon jobs created in exchange of the high-carbon jobs destroyed, especially in terms of

wage premia and skill requirements (Meyer, 2022).

However, a major barrier to understanding the characteristics of low-carbon jobs is the lack

of reliable data (Dierdorff et al., 2009; Consoli et al., 2016; Vona et al., 2018). Low-carbon

jobs – defined as those that directly contribute to decarbonizing the economy – are not

adequately captured in standard occupational classifications, which are too infrequently

updated to reflect the emergence of new jobs driven by technological change. These

classifications also fail to distinguish between high- and low-carbon roles within the same

occupation. For example, the category Automotive Service Technicians and Mechanics

(SOC 49-3023) includes both electric vehicle and combustion engine car repairers, making

it difficult to assess the unique skill and wage profiles of low-carbon jobs.

This paper addresses these limitations by shifting from an occupation-level comparison to

a job-level perspective, offering the first broad assessment of skill and wage gaps as well

as spatial barriers associated with the low-carbon transition. To identify low-carbon jobs

within standard occupational groups, we build on a growing body of literature in labor

economics using online job vacancy (OJV) data and their skill content to measure worker

exposure to emerging technologies, such as automation and routine-biased technological

change (Deming and Kahn, 2018; Atalay et al., 2020), Artificial Intelligence (Acemoglu

et al., 2022; Alekseeva et al., 2021) and general macroeconomic shocks (Hershbein and

Kahn, 2018a; Chetty et al., 2024). Our primary contribution is to extend and adapt this

methodology to the low-carbon technological change context by leveraging a near universe

of U.S. online job vacancy data from Lightcast spanning 2010-2019.

We develop a novel, data-driven methodology, applying advanced natural language pro-

cessing (NLP) techniques to textual data from well-established green classifications, i.e.

the U.S. Occupational information Network (O*NET) green tasks, CPC green patent

classes and green products from PRODCOM, to identify the skills most semantically rel-
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evant to decarbonization in the Lightcast dataset. This process isolates 389 low-carbon

skills∗ and identifies approximately 1.8 million job postings containing them, from a total

of 200 million postings. A key advantage of our approach is its ability to distinguish

between low-carbon and non-low-carbon roles within narrow occupational categories. For

example, we can isolate Renewable Grid Integration Engineers among Electrical Engi-

neers, and Wind Turbine Service Technicians among Installation, Maintenance, and Re-

pair Occupations, while excluding roles within low-carbon sectors or firms that do not

directly contribute to decarbonization such as Office and Administrative Support Occu-

pations. The resulting sample of low-carbon jobs goes beyond the energy sector, which

was the focus of previous studies (Curtis and Marinescu, 2023; Fabra et al., 2023), and

spans across a wide range of sectors, including construction and manufacturing, which are

likely to have larger effects on local job creation in the energy transition.† To prove the

robustness of our results to the key methodological choices, we cross-validate our method

through a comparison with task-based measures of green jobs (Vona et al., 2019; Elliott

et al., 2024) and extensive sensitivity checks.

Our skill-based methodology allows us to qualify and revisits several facts about green

jobs that are often taken for granted in the policy debate (OECD and CEDEFOP, 2014;

Kruse et al., 2017; Tomer and George, 2021; IMF, 2022; OECD, 2024). First, the share of

green jobs is smaller than previously thought. Green job shares have been estimated to be

in the range of 2-3% of total employment in studies using the task based approach with

occupation level data (Vona et al., 2019; Popp et al., 2021), or data on green production

(Becker and Shadbegian, 2009; Elliott and Lindley, 2017; Frattini et al., 2024), while

those that bypass the re-weighting of employment by green task intensity report shares

as high as 20% (OECD, 2024; Bowen et al., 2018; Valero et al., 2021). Our methodology

accurately isolates low-carbon jobs within occupations and estimates that the shares of

low-carbon employment have been around 1%, suggesting previous estimates exaggerated

the job creation effect of the green transition so far.

Second, we find that low-carbon job creation is more prevalent in low-skilled occupations

than high-skilled ones, thus questioning the common belief that the green transition, like

the parallel digital transition and globalization, will be biased against low-skilled work-

ers. Indeed, although job destruction of climate policies may be concentrated among

low-skilled workers (Marin and Vona, 2019; Yip, 2018), the very same workers may find

new employment opportunities in green activities. Importantly, this does not imply that

reskilling is not important for low-carbon technologies. Indeed, we find that low-carbon

∗The list of identified low-carbon skills is made open source for transparency and as a resource for future
research.

†For instance, Popp et al. (2021) show that the largest effects of the Obama green recovery package were
on construction workers. Knowledge-intensive engineering services and manufacturing are two other sectors that
provide key technologies for decarbonization but were under-investigated in previous studies on green activities,
with a few exceptions (Fankhauser et al., 2013; Frattini et al., 2024).
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jobs have more complex and diverse skill needs than similar jobs within the same occupa-

tion. We also find that re-skilling needs are highly idiosyncratic and occupation-specific,

requiring a more nuanced approach to retraining compared to the more simple solutions

being advocated in policy circles (Strietska-Ilina et al., 2012; OECD and CEDEFOP,

2014; OECD, 2024).

Third, within-occupation skill gaps are larger than previously thought. We show that

the skill gap within narrow occupations significantly contributes to the overall differences

in skill requirements between low-carbon and non-low-carbon roles, suggesting previous

estimates that considered only the between-occupation variation were underestimated

(Vona et al., 2018; Zaussinger et al., 2025). We also show that green skill gaps are highly

idiosyncratic and occupation-specific, requiring either specializing into core occupational

skills or diversifying towards new ones. Moreover, while across the board technical and

managerial skills emerge as the most important skills for low-carbon occupations, social,

IT and cognitive skills are also in higher demand in some green roles.

Fourth, the wage premium for low-carbon jobs are smaller than previously thought (An-

toni et al., 2015; Bluedorn et al., 2023; Vona et al., 2019; Curtis and Marinescu, 2023;

Kuai et al., 2025; Whittard et al., 2025), despite the higher skill complexity demanded

in low-carbon vacancies. Once controlling for 2-digit occupational dummies (a proxy of

broad occupational characteristics) and firm fixed effects (a proxy of rent and productivity

differentials), the low-carbon wage premia are modest and decline over time. Particularly,

our results highlight that firm fixed effects account for a large fraction of what was previ-

ously thought to be a large green wage premium, consistent with the literature on the role

of firm wage differentials as a key and growing determinant of wage inequality (Abowd

et al., 1999; Card et al., 2013; Song et al., 2019). The modest low-carbon wage premium

contrasts with high premium for high-carbon jobs in the same occupational groups, in-

dicating a potential attractiveness gap that may deter talented workers from choosing a

career in low-carbon activities.

Fifth, concentrating on low-skilled workers, who face higher risk of long-term unemploy-

ment and social exclusion and thus the main target of so-called just transition policies, we

show that emerging low-carbon jobs tend to be more spatially dispersed than declining

high-carbon ones. Nonetheless, we find positive spatial correlation between high-carbon

and low-carbon jobs in line with previous work examining jobs in renewable energy (Cur-

tis and Marinescu, 2023). Although this suggests that U.S. fossil fuel communities may

attract some green job creation, since low-carbon vacancies are more concentrated in

wealthier areas, the green transition could also exacerbate existing regional inequalities

(Popp et al., 2021; Bluedorn et al., 2023).

Our contributions are three fold. First, we address the lack of a universal and operational
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definition of low-carbon jobs, a major obstacle to rigorous research on the labor market

effects of the low-carbon transition. Definitions of what qualifies as “low-carbon” are

often contentious, and such debates can stall progress in both policy and public discourse.

Our approach seeks to move beyond this impasse by developing a transparent, replicable

and flexible data-driven method that avoids subjective choices in isolating jobs directly

contributing to decarbonization. We do so by applying NLP techniques to rich text data

from well-established green classifications and OJV data. In this way, we contribute

both to the emerging research using OJV data to study the green transition (Curtis and

Marinescu, 2022; Bone et al., 2025) and to the broader labor economics literature on the

impact of new technologies using OJV data (Deming and Noray, 2020; Acemoglu et al.,

2020), which has not previously applied these data to classify low-carbon jobs.

Second, we depart from previous research on green jobs (Vona et al., 2018; Bowen et al.,

2018; Vona et al., 2019; Bluedorn et al., 2023; Elliott et al., 2024) by exploiting within-

occupation and within-firm variation in the data, thereby demonstrating the value of

using granular, job-level analysis. This enables us to characterize reskilling needs more

precisely, and provide more reliable estimates of wage premia arising from low-carbon-

related technological change, particularly within the most exposed occupational groups.

Controlling for unobserved heterogeneity at both the occupation and firm level is essential

for constructing reliable counterfactuals, comparing low-carbon jobs to similar non-low-

carbon jobs (within-occupation) and isolating the firm-level component of the low-carbon

wage premium. This approach is especially valuable outside the U.S. context, where lack

of official data on the task content of occupations and coarse occupational classifications,

such as those in the UK and Europe, severely constrain occupational-level analysis.

Third, our coverage of low-carbon jobs across all occupations and sectors allows us to

examine the extent to which the low-carbon transition can be considered “just” in terms

of benefiting distressed regions and manual workers who have been left behind by other

structural transformations, such as globalization and automation (Iammarino et al., 2019;

Autor et al., 2021; Hanson, 2023).‡ In doing so, our work directly addresses the concerns

of workers and communities in high-carbon industries, thereby helping to enhance the

political acceptability of ambitious climate action.

Taken together, our transparent methodology and detailed analysis substantially improves

the evidence on skills and wage gaps, providing a stronger foundation for designing com-

prehensive policy frameworks, e.g. green deal plans, that strategically target training pro-

grams, reskilling investments and wage insurance subsidies where they are most needed.

‡Previous empirical evaluations typically focus on specific polluting sectors where job destruction is likely
concentrated, for instance evaluating the U.S. Clean Air Act (e.g. Greenstone, 2002; Morgenstern et al., 2002;
Walker, 2011; Curtis, 2018; Walker, 2013), the effects of carbon pricing in Europe (e.g. Martin et al., 2014; Marin
et al., 2018; Dechezleprêtre et al., 2023) or that of energy prices (Deschenes, 2011; Kahn and Mansur, 2013; Marin
and Vona, 2019)
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This paper is structured as follows. Section 2 presents the data and our methodology

for identifying low-carbon jobs. Section 3 describes the evolution of U.S. low-carbon job

shares. Section 4 quantifies the skill gap between low- and high-carbon jobs and generic

jobs. Section 5 estimates low-carbon wage premiums. Section 6 explores spatial gaps for

displaced low-skilled workers, before concluding in Section 7.

2 A skill-based approach to identifying low-carbon jobs
Given the salience of decarbonization in current policy debates, this paper focuses on “low-

carbon” activities, a subset of “green” activities that specifically contribute to reducing

greenhouse gas (GHG) emissions across various sectors. Unlike standard definitions of

green jobs, which often encompass activities related to water, waste management, reme-

diation, and recycling, our analysis narrows the focus to activities that directly support

decarbonization. This approach not only captures efforts to reduce emissions from power

generation but also extends to sectors that received substantial funding under green re-

covery packages, such as construction, transport and manufacturing.

Isolating low-carbon skills presents several challenges. Technologies constantly evolve,

new low-carbon jobs continually emerge, and defining what qualifies as “low-carbon” can

be highly contentious. To navigate this, we introduce a methodological framework that

applies NLP techniques to text data from online job postings to identify low-carbon skills

and jobs. Our skill-based approach offers several advantages over other methods using

online job postings data to identify green skills and jobs (Curtis and Marinescu, 2022;

Bone et al., 2025), especially around objectivity, coverage and scope, granularity and

transparency.

First, a key methodological innovation is our data-driven approach to identifying what

is relevant to “low-carbon”, leveraging text data from well-established low-carbon classi-

fications to reduce subjectivity, rather than relying on researcher-defined keyword lists.§

While some design choices are needed (see next section), it nonetheless has fewer degrees

of freedom and avoids setting too narrow selection criteria or combining too many different

criteria.¶

Second, using only semantic similarity between Lightcast skills and well-established green

classification reduces the degree of freedom in the skill selection, thus making our approach

more replicable. At the same time, the approach is highly flexible: by adjusting the source

text, our approach can be adapted to identify green jobs in either a broad or narrowly

defined set of activities.

§For example, in Acemoglu et al. (2022), the authors select 33 skills relating to Artificial Intelligence in
footnote 13.

¶In Curtis and Marinescu (2023), relevant green jobs are identified through keyword searches applied to job
titles, occupation categories, skills and firm names.
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Third, our scope is wide and thorough than that of papers using OJV data for specific

sectors such as renewable energy (Curtis and Marinescu, 2023) or electric vehicles (Curtis

et al., 2023). Our focus on the whole economy allows to assess broader green skill gaps

and thus be of more useful to design retraining programs for the low-carbon transition

in critical sectors such as manufacturing and construction. Bone et al. (2025) also apply

a skill-based approach to OJV data, relying on Lightcast’s Open Skill Taxonomy that

identify 259 green skills. Our algorithm identifies a broader and arguably more relevant set

of low-carbon skills, suggesting the presence of false negatives in the Lightcast taxonomy.‖

Fourth, while using firm-level definitions of green assumes that all roles within a clean

energy company are inherently “green” (e.g. Curtis and Marinescu, 2023), we instead

isolate only those job ads that specifically require low-carbon skills, enabling more accurate

measurement of green skill requirements and wage gaps.

While our approach has clear advantages, it is not without limitations. Relying on extant

green classifications means being constrained by their scope and boundaries and some

design choices are needed. We demonstrate the credibility of these choices through com-

prehensive sensitivity checks and cross-validation against the task-based measure of green

jobs, further supporting the robustness of our approach. This section documents in details

the data sources and techniques applied.

2.1 The Lightcast online job vacancy data

Following recent studies in labor economics (e.g. Hershbein and Kahn, 2018b; Deming and

Kahn, 2018; Acemoglu et al., 2022) we leverage data from Lightcast (formerly Burning

Glass Technologies), which collects raw text from online job ads via web scraping of

approximately 50,000 online job boards and company websites (Lancaster et al., 2021) for

the U.S.. Lightcast cleans and codifies the raw text into standardized variables including

skill requirements, occupational categories, wage offers, educational attainment, company

names, and locations. Importantly, job ads contain rich textual information on skill

requirements, which Lightcast canonicalizes into a taxonomy of over 16,000 unique skills.

The resulting dataset covers approximately 200 million ads from 2010 to 2019, representing

the near-universe of U.S. online jobs.

While increasingly used in research, it is important to recognize that OJV data over-

represent growing firms (Davis et al., 2012) and certain occupations, such as business &

financial, computer & mathematical, and education & law, while under-represent sectors,

such as construction, sales & service, agriculture and transport (Tsvetkova et al., 2024).

Furthermore, self-employment opportunities are not represented online. Finally, online

job vacancy data capture changes in labor demand (i.e. a flow) rather than employment

‖Approximately 40% of skills in Lightcast’s database are not assigned to a skill cluster or family, partly
explaining this gap. Additionally, our approach improves on transparency, as the Lightcast green skill classification
is not fully documented.
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(i.e. a stock). To mitigate these biases, we reweight low-carbon jobs using Bureau of

Labor Statistics (BLS) employment shares in our analysis (see Appendix Table A.1).

2.2 Low-carbon skills selection algorithm

Our goal is to identify which of the 16,000+ Lightcast skills should be classified as “low-

carbon”. Rather than relying on potentially subjective keyword lists, we develop a data-

driven approach that leverages three complementary signals to maximize the identification

of relevant skills while maintaining precision through a transparent and replicable algo-

rithm. This multi-signal approach ensures that we capture the full spectrum of low-carbon

skills across different contexts while avoiding false positives.

In particular, we do not simply rely on Lightcast’s own “Environment” skill category∗∗, as

this would miss many relevant skills, such as those related to solar and wind power which

are found in the “Energy and Utilities” category instead. One way to circumvent this

problem would be to manually classify skills as low-carbon. However this would introduce

considerable subjectivity, which the contentious nature of determining what qualifies as

“low-carbon” makes particularly problematic.

To overcome these issues, we introduce a fully data-driven algorithm, leveraging three well-

established green classifications. First, green tasks from the Occupational Information

Network dataset (O*NET) is the main database used in the literature to identify green-

related work (e.g. Dierdorff et al., 2009; Vona et al., 2018). O*NET provides detailed

task descriptions for green occupations, such as ‘Order parts, tools, or equipment needed

to maintain, restore, or improve wind field operations” and “Prepare or review detailed

design drawings, specifications, or lists related to solar installations”. One limitation is

that O*NET does not distinguish between low-carbon and general “green” tasks. Second,

the climate change mitigation and adaptation patent categories (CPC Y02 patent class)

provides established definitions used in the literature (e.g. Egli et al., 2015; Glachant and

Dechezleprêtre, 2016; Calel and Dechezleprêtre, 2016).†† The advantage of this source is to

add “low-carbon specific” keywords. Third, to ensure adequate coverage of the transport

sector, we incorporate a list of trade product categories related to low-carbon transport

(e.g. railways) from the PRODCOM database (Bontadini and Vona, 2023).

By combining these three complementary sources, we aim to cover the majority of activi-

ties relevant to decarbonization across different sectors of the economy.‡‡ In the following,

∗∗Lightcast skill categories, also called skill clusters in older versions of the Lightcast dataset, are groupings of
skills that have similar functionality, can be trained together, and/or frequently appear together in job postings.
For example, both the skills hydrology and meteorology belong to the skill subcategory “Earth and Space Science”,
which belongs to the broader Skill category “Science and Research”.

††For example, Class Y02E covers “Reduction of Greenhouse Gas Emissions Related to Energy Generation,
Transmission or Distribution”.

‡‡If, alternatively, the objective is to isolate only the jobs that relate to the hydrogen economy, a hydrogen-
specific source text can be used e.g., the patent classification YO2E 60/3.
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we outline the four steps of our algorithm. Full implementation details are provided in

Appendix B.1.

Step 1: Keyword extraction from textual sources

We begin by extracting keywords that distinguish low-carbon content from generic con-

tent within each source classification. We apply a state-of-the-art keyword extraction

algorithm, YAKE (Campos et al., 2020), to extract one- and two-word keywords charac-

teristic of each item in our three textual sources (i.e., each O*NET task, technology title

or product description). The algorithm yields a relevance score for each keyword. We

then select the keywords that appear in the green subsets of each source, and rank them

by the difference between the scores they obtain in the green vs. non-green subsets§§.

We then plot the distribution of this difference across extracted keywords for each source

(see Figure B.1). All three distributions exhibit clear nonlinearities which allow us to

define thresholds specific to each source. Keywords that yield a difference in their green

vs non-green relevance scores above the source-specific threshold enter our final set of

low-carbon keywords. In our main threshold specification, this step yields 35 low-carbon

keywords (see Table B.1), including terms such as “solar”, “climate change”, and “wind

turbine”.

Step 2: Classify skills using three complementary signals

We then leverage textual analysis and the keywords obtained in the previous step to

identify which of the 16,000+ Lightcast skills are low-carbon. We implement a three-

pronged approach to maximize coverage, as different signals capture different kinds of

evidence that a skill is genuinely low-carbon. Sensitivity to alternative cut-offs is reported

for each signal in Appendix I.

Signal A: Contrastive frequency (not keyword-dependent). We compare how often each

Lightcast skill appears in the green versus the non-green subsets of our three textual

sources. A skill is flagged as low-carbon when it appears in the green subset but not in the

non-green subset of a given source and its frequency score falls in the top quintile for that

source. For the patent source, where core climate technologies frequently occur outside

the Y02 class, we relax the “absent from non-green” requirement. This frequency-based

signal identifies 46 low-carbon skills, such as “Smart Grid” and “Biofuels Processing”.

Signal B: Direct lexical match to low-carbon keywords. We then use our low-carbon key-

words with a simple, direct string-match rule: if a Lightcast skill name is an exact match

to any of the 35 low-carbon keywords from Step 1, it is flagged as low-carbon. This signal

is particularly useful for avoiding false negatives for highly specific technical terms. These

direct matches contribute an additional 214 low-carbon skills, such as “Solar Farm” and

§§Considering a non-green score of zero if the keyword only appears in the green subset.
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“Wind Turbine Construction”.

Signal C: Semantic match to low-carbon keywords. While effective, simple keyword match-

ing can miss important connections due to vocabulary differences across sources. For

example, a keyword like wind turbine is semantically related to the Lightcast skill “Clean

Energy” even though they share no common words. To address this challenge, we employ

semantic matching using sentence transformers (Reimers and Gurevych, 2019), which

capture the underlying meaning of terms rather than just their textual similarity. This

technique allows us to overcome vocabulary differences between our source texts and the

Lightcast skills taxonomy.¶¶ For each Lightcast skill, we compute the average of the

semantic proximity score between that skill and each low-carbon keyword. We classify

skills that achieve an average proximity scores in the top percentile as low-carbon. This

yields a further 35 low-carbon skills, such as “Clean Energy” and “Emission Reduction

Projects”.

Step 3: Coverage extension through semantic clustering

We recognize that most Lightcast skills are not semantically unique. For example, “Solar

Equipment”, “Solar Panels”, “Solar Energy Systems” and “Solar Photovoltaic Panels”

are distinct in the Lightcast taxonomy but semantically similar to each other. The three

signals of Step 2 identify “Solar Equipment” and “Solar Panels”, but not the other two

solar-related skills. To address such potential gaps, we apply agglomerative hierarchi-

cal clustering to regroup the 16,000+ Lightcast skills into 6,668 semantically consistent

clusters.∗∗∗ If one skill in a cluster is identified as low-carbon, all skills in that cluster

are classified as low-carbon. This iteration adds 98 more low-carbon skills, including

“Solar Energy Systems” and “Solar Photovoltaic Panels” from the above example, along

such skills as “Climate Policy”, “Carbon Accounting” and “Weatherization Installation”

among others.

Step 4: Exclusion for decarbonization focus and of false positives

To sharpen the focus on decarbonization and avoid false positives, we exclude job ads

that simultaneously contain both high- and low-carbon skills, and apply a targeted ex-

clusion list with three parts: i) green but non-climate skills (e.g. water treatment or

environmental remediation) are excluded because O*NET green tasks can conflate envi-

ronmental and low-carbon content; ii) generic energy-related skills that are not specific

to decarbonization (e.g. nuclear); iii) fossil-fuel related skills which can be semantically

¶¶For example, patents typically use specialist, technical vocabulary that differs from the more generalist
language found in job advertisements.

∗∗∗We apply agglomerative hierarchical clustering on the high-dimensional semantic vector representation (i.e.,
sentence embeddings) of skills that we obtained to perform semantic matching. This allows us to automatically
identify skills that are conceptually related (e.g., “Python programming”, “R programming”, and “statistical
software” would form a cluster) without requiring manual classification. The resulting 6,668 clusters provide a
more tractable unit of analysis while reducing noise from near-duplicate skills.
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close to decarbonization skills and therefore yield false positives. These are implemented

as a combination of a limited number of excluded Lightcast skill categories and excluded

keywords, as documented in Table B.2. These non-climate green and gray job ads are

reintroduced in sensitivity tests (Table B.4 lists skills that are reintroduced for this sen-

sitivity analysis). Finally, a set of brand-name false positives that include low-carbon

related terms (such as e.g. software systems “Solaris”, “Sunguard” or “Greenplum”)

listed in Table B.3 are excluded.

Through this four-step algorithm, we identify 389 low-carbon skills, which we call “low-

carbon job identifiers” (listed in Tables B.5-B.7). A job posting is considered low-carbon

if it contains at least one of these identifiers. Out of the 200 million job ads in the

Lightcast data, approximately 1.8 million are identified as low-carbon. Table B.8 lists the

most common low-carbon identifiers, which relate to energy efficiency, conservation, and

renewable energy. Examples of typical low-carbon job ads are provided in Table B.9.

We ensure that our results are robust to the use of alternative thresholds at each step of

the algorithm, and that our main findings remain unchanged when we relax our exclusion

list to include non-climate green skills and nuclear energy in Appendix B.2.

2.3 Identifying high-carbon ads

To explore the impact of the low carbon transition on workers, we also identify jobs at risk

of displacement. In contrast to low-carbon jobs, high-carbon jobs, being associated with

incumbent fossil-fuel technologies, are better captured by extant sector and occupational

classifications. Similar to Vona et al. (2018) and to subsequent works (Bluedorn et al.,

2023; Popp et al., 2021; Zhang et al., 2025), we use the concentration of an occupations

in polluting industries to identify brown jobs. Specifically, we follow (Popp et al., 2021)

and define high-carbon jobs as those that are in one of the two major occupational group

containing high-carbon roles (i.e. engineering and construction & extraction) and are

engaged in fossil-fuel related tasks (complete list in Appendix Table B.10).††† This defi-

nition focuses on jobs that will unavoidably disappear with decarbonization. Hence, we

exclude jobs in carbon-intensive manufacturing industries, which may become greener in

the future. This approach identifies around 200,000 vacancy postings‡‡‡ (approximately

0.3% when weighted by BLS employment).

2.4 Cross-validation with the task-based approach

To assess the validity of our classification, we benchmark our skill-based identification of

low-carbon jobs against the widely used task-based classification of green jobs (e.g. Vona

et al., 2019; IMF, 2022; Elliott et al., 2024), in which the “greenness” of an occupation is

defined by the share of green tasks relative to total tasks, based on O*NET data.

†††The share of high-carbon job vacancies by occupation is shown in Table C.1.
‡‡‡A small subset of these high-carbon ads (less than 10,000 ads) are also flagged as low-carbon. We exclude

these jointly high- and low-carbon ads from the rest of our analysis.
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To enable comparison, we compute, for each occupation, the share of job ads classified

as low-carbon in the Lightcast dataset and benchmark it against the corresponding task-

based measure at the same occupational level. Because O*NET green tasks covers a

broader spectrum of green beyond those relevant to low-carbon, we construct a refined

subset of low-carbon-specific tasks from O*NET (see Appendix J.1 for details). As shown

in Appendix J.2, at the SOC 2-digit level, the correlation between our ad-based approach

and the task based approach is strong, whether with the original O*NET green tasks (first

panel), or the selection of low-carbon O*NET green tasks (second panel). We additionally

cross-validate our results on low-carbon employment shares through comparison with the

task-based approach in section 3.

2.5 Key occupations for the energy transition

To examine the differences between low-carbon and non low-carbon jobs within occupa-

tions, we focus on six occupations with a high density of low-carbon job ads. These are

chosen based on both low-carbon job shares and absolute numbers, as explained in Ap-

pendix C. They are four high-skilled 3-digit SOC occupations: Business Specialists (13-2);

Engineers (17-2); Engineering & Mapping Technicians (17-3); and Physical Scientists (19-

2), as well as two low-skilled 2-digit occupations: Construction & Extraction (47); and

Installation & Maintenance (49). The 2-digit level is chosen for low-skilled occupations

because workers’ mobility across-occupation is possible with some investments in training,

whereas high-skilled workers typically require substantial formal education to transition

between 3-digit occupations (e.g. biology to physics). These key occupations align closely

to those identified as most green-task intensive using O*NET data (Vona et al., 2019).

In the following sections, we focus on the 6 key occupations, and leverage this dataset to

explore the barriers to reallocation to low-carbon jobs, specifically by assessing the skill,

wage, and spatial gaps.

3 Employment share of low-carbon jobs
In the absence of a universal and operational definition of low-carbon jobs, it is unsur-

prising that estimates of green employment vary widely in the literature depending on

the level of analysis (e.g., sector or occupation), the methodology chosen and the gran-

ularity of the data (Vona, 2021; Apostel and Barslund, 2024). Within occupation-based

estimates, the upper end results from using the binary approach whereby all employment

in an occupation involving a green tasks is considered green (Bowen et al., 2018; Valero

et al., 2021; OECD, 2024), while the over-estimation can be corrected using the contin-

uous approach that re-weights employment shares by the share of green tasks over total

tasks as proposed by Vona et al. (2019), resulting in more moderate figures (Vona, 2021).

Our estimates suggest that even the most conservative estimates may have overstated the

scale of green job creation. As shown in Figure 1, the employment-weighted share of low-
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carbon jobs averaged just 0.9% of the U.S, workforce between 2010 and 2019, equivalent

to approximately 1.3 million workers.§§§ This lower figure partly reflects our focus on

low-carbon activities specifically, rather than the broader set of environmental activities

(e.g. water, waste, remediation, and gray energy jobs such as those linked to nuclear)

typically included in earlier studies - many of which are labour-intensive.

We argue that our methodology offers a more accurate measure of the true scale of low-

carbon employment, as it allows for job-level identification of relevant skills within occupa-

tions, rather than assuming all roles in a firm or sector are uniformly green. Interestingly,

despite relatively modest progress on decarbonization in the U.S. during the sample pe-

riod - total greenhouse gas emissions declined by only 6.2% (U.S. Energy Information

Administration, 2021), and the shale gas production expanded significantly - low-carbon

jobs still accounted for a larger share of employment than jobs in high-carbon extraction

sectors averaging 0.27% between 2010 and 2019 (see Figure E.1b).

0.0%

0.2%

0.5%

0.8%

1.0%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Total Low skill High skill

Figure 1: Evolution of low-carbon vacancy shares in the U.S. (2010-2019)

Notes: Plotted shares of low-carbon ads are first calculated at the 6-digit SOC occupation level as the ratio between the
number of low-carbon ads and the total ads within a 6-digit occupation, then averaged for each reported SOC grouping
weighing by 6-digit employment obtained from the BLS. Includes all occupations. Source: Lightcast and BLS.

Over the past decade, the share of low-carbon vacancies in total job postings remained

relatively stable (Figure 1). This contrasts with the steady decline observed in high-carbon

jobs (Figure E.1b), and with the growth seen in renewable power-related jobs (Popp et al.,

2021; Curtis and Marinescu, 2023). More specifically, our data shows a modest increase

in the share of low-carbon job postings from 0.83% in 2010 to 0.97% in 2012, coinciding

with the job creation effects of the American Recovery and Reinvestment Act (ARRA)

(Aldy, 2013; Popp et al., 2021). This was followed by a period of decline and stabilization

§§§As indicated in the Figure notes, here we include all occupations and not only the 6 key occupations identified
in Section 2.5 in order to gain a general understanding of the share of low-carbon jobs in the U.S. economy.
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around 0.80%, before rising again from 2015 onwards.¶¶¶

A particularly noteworthy finding is that low-carbon jobs are more concentrated in low-

skilled occupations, and this share has increased over time. Our data reveals divergent

trends: the share of low-carbon jobs in high-skilled occupations declined from 0.39% in

2010 to 0.26% in 2019, while for low-skilled occupations, the share increased from 0.50%

to 0.61% over the same period (Figure 1) and Table E.1). The evolution of low-carbon job

shares is also highly heterogeneous across the six most relevant occupations as shown in

Appendix Figure E.1a. Notably, the share of low-carbon vacancies declined for Business

Specialists (from 3.0% to 1.6%) and Engineers (from 5.5% to 3.9%) while it increased in

Construction and Installation.

This finding - that low-carbon vacancies are more concentrated and growing only in low-

skilled occupations- is an encouraging signal for the prospects of a just transition, while

earlier studies suggest that the green transition is likely to be skill-biased, favoring high-

skilled workers at the expense of those with lower qualifications (Marin and Vona, 2019).

It is also somewhat surprising given that, over the last five decades, technological change

has been associated with a shift in demand towards high-skilled workers and increased

income inequality (Katz and Murphy, 1992; Acemoglu, 2002; Acemoglu and Autor, 2011;

Autor et al., 2016). At the same time, this pattern echoes prior evidence on the job cre-

ation effects of ARRA’s green investments that primarily targeted manual and low-skilled

occupations (Popp et al., 2021). Thus, expansion of low-carbon employment opportunities

in low-skilled segments of the labor market may help to partially offset to the longer-term

trend of deteriorating labor market conditions for low-skilled workers.

To cross-validate our methodology, we reproduce low-carbon employment shares based on

the task-based approach and compare the results with our own estimates (see Appendix

J.3). While our measure suggests that low-carbon jobs accounts for 0.9% of total employ-

ment, the task-based approach yields a higher share of 3.2% when applying the broader

ONET green definition, consistent with prior studies (Vona et al., 2019). When using

only the low-carbon subset of O*NET tasks, the estimated share is lower at 1.5%, and

thus much closer to our own estimate. The fact that we obtain results within a compara-

ble range, particularly when focusing on low-carbon-specific tasks in O*NET, reinforces

confidence in the validity of our classification. Given the finer resolution of our job-level,

skill-based approach, we consider it likely to offer a more precise approximation of the

true share of low-carbon jobs in the economy.

Sensitivity checks (Appendix Table I.3) confirm that reasonable changes in cut-offs do

not strongly affect the low-carbon shares. For instance, relaxing the frequency threshold

¶¶¶After adjusting for multiple hypothesis testing using the Bonferroni correction, all trends are statistically
significant.
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by 10% (column b) and expanding low-carbon skills to include gray skills (column h)

increases the overall number and share of low-carbon jobs by around 1.2% and 1.1%

respectively.

4 Skill gaps
The expectation that significant workforce reallocation is needed under ambitious de-

carbonization scenarios (Hafstead and Williams III, 2018; Castellanos and Heutel, 2024)

raises concerns over skill gaps, which have been identified as a primary obstacle to the re-

allocation of workers across occupations (Poletaev and Robinson, 2008; Kambourov and

Manovskii, 2009; Gathmann and Schönberg, 2010).This section shows that low-carbon

jobs systematically demand more skills, and more diverse set of skills compared to their

non-low-carbon counterparts, even within the same occupation or firm. In other words,

even if the low-carbon transition is not biased in favor of high-skilled workers, it re-

quires substantial retraining within existing occupations. We also show that reskilling

requirements are highly occupation-specific, pointing to the need for targeted retraining

strategies.

4.1 Within and between occupational green skill gaps

To assess the differences in skill requirements of low-carbon and similar non low-carbon

jobs, we build a measure of the green skill gap based on the frequency of specific skills

being observed in low-carbon job postings relative to generic ads. This intuitive frequency-

based based has been previously used to deal with data that do not provide information on

skill importance, such as OJV data (Deming and Kahn, 2018; Deming and Noray, 2020)

or German task data (Spitz-Oener, 2006; Gathmann and Schönberg, 2010). Importantly,

the specific green skill used to identify the job as low-carbon is always excluded from the

comparison.

Denoting the share of job ads that mention skill s within 6-digit occupation k and job

type i - either low-carbon (i = g) or generic ads i = ng - as f i
sk =

ni
sk

ni
k
, we define the

aggregate low-carbon skill gap for skill group s as:

f g
s − fng

s =
∑
k

ωg
kωk × (f g

sk − fng
s ), (1)

where fng
s is the simple average share of job ads mentioning skill s across all occupations,

ωg
k is the share of low-carbon jobs in total jobs for occupation k and ωk is the employment

share of occupation k, accounting for the size of the occupation. This measure reflects

both within-occupation and between-occupation differences in skill demand and to further

disentangle these effects, we decompose the skill gap as follows:

For comparability, both measures are renormalized such that
∑

k ω
g
k × ωk = 1. This ensures that fg

s − fng
s

can be interpreted as the average skill gaps across occupations at 6-digits.
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f g
s − fng

s =
∑
k

ωg
kωk × [(f g

sk − fng
sk ) + (fng

sk − fng
s )]. (2)

The second element in the square bracket is the between-occupation component of the

skill gap - that is, the extent to which the share of low-carbon jobs (ωg
k) correlates with

the difference in skill use across occupational groups. This component is the focus of

prior research using occupation-level data. The first element instead captures the within-

occupation skill gap - that is, the difference in skill intensity between low-carbon and

generic jobs within the same occupational group. This dimension is unobservable in

occupation-level datasets and can be estimated for the first time in our study thanks to

the high granularity of the OJV data. This decomposition allows us to quantify the extent

to which earlier research may have underestimated the true scale of skill gaps.

To make the Lightcast data’s skill multidimensionality more tractable, we then follow

the approach of Deming and Kahn (2018) and group skills into five broad categories —

cognitive, social, IT, managerial, and technical. This grouping aligns with prior research

highlighting the importance of cognitive, social, and managerial skills in tasks less prone

to automation (Autor et al., 2003; Deming, 2017), and the specific relevance of technical

skills to green technologies in the workplace (Vona et al., 2018).

Table 1 reports the results of the decomposition for each five broad skill category, using

four different weighting schemes resulting from the combination of different choice of ωg
k

and ωk in each column. Four key results emerge. First, skill gaps are consistently positive

across all categories, indicating that low-carbon jobs require more skills than comparable

roles. Second, the within-occupation component significantly contributes to the overall

gap, suggesting that previous occupation-level analyses underestimated the true extent of

the reskilling challenge. Third, the within-component is especially larger for managerial,

social, and technical skills where it accounts for up to one-third of the overall gap. This

confirms the technical and managerial skill bias of green activities previously found (Vona

et al., 2018; Marin and Vona, 2019). Finally, a novel finding here is that green jobs also

require social skills more than generic jobs.

The average green skill gap may mask differences in the scale of these gaps across occupa-

tions, and we explore this heterogeneity, by comparing the prevalence of skills in the five

For example, (Vona et al., 2018) estimate the skill gap using the covariance between the occupational green
task intensity (ωg

k) and the across-occupation skill gaps (fsk − fs). In O*NET-based studies, fsk is observed, but
fng
s is not. Because the share of green jobs in each occupation is small, fng

s is highly correlated with fs.

More specifically, skills are classified into five groups using a set of keywords provided by (Deming and Kahn,
2018) except for IT skills that uses the Lightcast IT skill family (see Table F.1 for a complete list) and technical
skills that use (Vona et al., 2018) (see Appendix Table F.1).

The former is either the green task intensity from O*NET or the share of low-carbon task from Lightcast
data. The latter is either the 6-digit occupational employment share from BLS or the number of Lightcast job
ads.
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broad skill categories across low-carbon (f g
sk), high-carbon (f b

sk) and generic job postings

(fng
sk ). Figure F.1 in the Appendix shows that, consistently across occupations and broad-

skill types, a higher share of low-carbon jobs demand these skills, both at the extensive

margin (one skill mentioned) and the intensive margin (two or more skills mentioned).

However, the size and significance of the gaps indeed, differ by occupation (see also the

corresponding Table F.2 in Appendix for details). Larger skills gaps are observed for En-

gineering technicians and Installation & maintenance workers, especially for managerial,

technical and social skills, indicating potential challenges in filling low-carbon vacancies

in these occupations. Technical skills drive much of the gap for Business Specialists, while

management ad IT skills drive the gaps in Construction. When examining the shift from

high- to low-carbon jobs, we find that high-carbon ads also require more skills compared

to generic jobs. This suggests a narrower skill gap between low- and high-carbon ads, as

previously noted (Vona et al., 2018; Popp et al., 2021; Lim et al., 2023). However, it is

noteworthy that for engineers, low-carbon vacancies demand more skills than high-carbon

ones (Appendix Table F.2).

Table 1: Skill gaps between low carbon and non-low carbon jobs, within and between
occupations

O*NET

greenness ×
Employment

share

Low-carbon

share ×
Employment

share

O*NET

greenness ×
Job ads

share

Low-carbon

share ×
Job ads

share

Cognitive 21.03% 17.87% 25.88% 22.92%

Within-occupation 2.59% 2.81% 2.87% 2.79%

Cross-occupation 18.45% 15.06% 23.02% 20.13%

IT 26.70% 22.19% 33.53% 29.61%

Within-occupation 2.47% 2.58% 2.82% 3.13%

Cross-occupation 24.23% 19.61% 30.71% 26.48%

Management 35.34% 29.35% 39.22% 36.39%

Within-occupation 8.29% 8.20% 10.51% 10.45%

Cross-occupation 27.05% 21.15% 28.72% 25.94%

Social 38.96% 33.84% 44.58% 41.78%

Within-occupation 7.44% 7.41% 9.44% 9.23%

Cross-occupation 31.53% 26.44% 35.14% 32.55%

Technical 32.73% 26.78% 36.86% 34.13%

Within-occupation 8.68% 9.29% 9.18% 10.52%

Cross-occupation 24.05% 17.49% 27.68% 23.61%

We exploit the spatial variation across Commuting Zones (CZ) in the share of low-carbon ads in specific
occupations to compute confidence intervals (see Table F.3 for details). Commuting Zones, as defined by the U.S.
Department of Agriculture (USDA) Economic Research Service (ERS) are geographic units intended to more
closely reflect the local economy where people live and work.
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Notes: Here we stack together the 6 key occupations identified in Section 2.5, weighting them by BLS employment. This
table shows the within- and between-occupation skill gaps for five major skill categories as defined by Equation 2. Skills
are categorized using a set of key words as detailed in main text. These are calculated using 4 different combinations of
weights ωg

k and ωk (in columns). Skill gaps are reported in percentage points, multiplying the difference in the shares by
100 for readability. Source: Lightcast and BLS.

4.2 Skill complexity

Our results so far suggest that low-carbon jobs require a broader and more diverse range

of skills than comparable non-low-carbon roles. This pattern is consistent with the idea

that low-carbon jobs involve more complex tasks, as previous research has shown that job

complexity is strongly linked to the number and diversity of the skills required (Deming,

2017; Alabdulkareem et al., 2018; Deming, 2023; Stephany and Teutloff, 2024). This

pattern is evident in OJV data where ads of high-skilled jobs require more skills than ads

of low-skilled jobs.

Table 2: Skill vector length of generic, low- and high-carbon jobs by occupation

Generic Low carbon High carbon

13-1 - Business Operations Specialists 11.5 14.8

17-2 - Engineers 11.9 16.2 10.6

17-3 - Engineering and Mapping Technicians 9.5 14.5

19-2 - Physical Scientists 10.9 15.7

47 - Construction and Extraction 6.3 10.0 7.9

49 - Installation, Maintenance, and Repair 8.4 13.4

All occupations 9.3 14.1 9.2

Notes: This table shows the average skill vector length of generic, low-carbon and high-carbon job ads in our sample, by
3-digit (for high skilled) and 2-digit (for low-skilled) SOC groups, for the years 2010 to 2019. Source: Lightcast.

Concerning low-carbon ads, Table 2 shows that they require more skills per ads, and thus

are more complex than generic ads, within the same occupation and after excluding the

specific green skills used to identify the job as low-carbon. Two possible explanations

can account for this pattern. First, firms may write more detailed postings to attract

applicants regardless of job complexity. However, this result holds even after including

firm fixed effects to control for unobservable heterogeneity, for example in job advertising

strategies (Table 3 and Appendix Table 2). Second, green jobs may represent new job

types, requiring employers to specify more skills to ensure a suitable match. However,

the difference in skill vector length between low-carbon and generic jobs remains stable

On average in 2019, more skills are contained in high-skilled job ads (e.g. 17 - Architects & Engineers and
19 - Scientists) with a median of 10 skills per ad, than in low-skilled job ads (e.g. 47 - Construction & Extraction
and 49 - Installation, Maintenance & Repair) with a median of 7 skills per ad.

This result is robust to winsorizing the skill length at 30 skills per ad (see Appendix Table F.4). Appendix
Table I.4 also shows that our finding that low-carbon jobs have higher skill requirements is robust to the design
choices made in the low-carbon skill selection algorithm, specifically the cut-offs used, and the inclusion of gray
skill clusters in low-carbon skills.
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through our sample period, rather than decreasing over time (see Appendix Figure F.2),

indicating that the novelty of low-carbon roles is not the driver here.

Table 3: Within-firm differences in skill vector length between low carbon and generic
ads

13-1 - Business 17-2 - Engineers 17-3 - Engineering and
Operations Specialists Mapping Technicians

Low carbon 1.561*** 2.623*** 2.953***
(0.228) (0.157) (0.227)

Mean length 12.45 13.02 10.65

Firm FEs Yes Yes Yes
Year FEs Yes Yes Yes

R2 0.3 0.27 0.4
Observations 6,549,642 2,957,995 1,397,391

19-2 - Physical 47 - Construction 49 - Installation,
Scientists and Extraction Maintenance, and Repair

Low carbon 2.379*** 2.693*** 2.618***
(0.230) (0.240) (0.424)

Mean length 11.95 7.7 9.26

Firm FEs Yes Yes Yes
Year FEs Yes Yes Yes

R2 0.41 0.52 0.47
Observations 284,835 1,235,908 5,017,358

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The dependent variable is the skill vector length, which is regressed on a binary variable indicating whether a job
ad is low carbon or not, and on firm fixed effects. Source: Lightcast. Standard errors are clustered at the firm level. *
p<0.1, **p< 0.05, *** p<0.01

Taken together, we find strong evidence that low-carbon jobs are systematically more

skill-intensive requiring more complex skill profiles than comparable roles. This result

motivates our subsequent analysis of whether these higher skill demands are also reflected

in wage outcomes, as explored in Section 5.

4.3 Reskilling paths by occupation

Our findings that low-carbon jobs require a richer skill portfolio than similar non-low car-

bon jobs suggests that substantial re-skilling efforts will be required to enable the expected

large scale mobilization of a greener workforce in the coming decades. To understand

whether low-carbon jobs require workers to deepen existing competencies or to diversify

beyond their occupational core, we introduce a new reskilling indicator measuring the di-

rection of skill reorientation required by new and emerging jobs, such as low-carbon ones.

This indicator is based on the correlation between two Balassa indices of skill prevalence,

New emerging jobs are often a main channel through which new skills enter the labor market (Lin, 2011;
Autor et al., 2022) hence represent evolving roles in the labor market.
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which has been used in previous research on skill differences across occupations (Alab-

dulkareem et al., 2018). The first index assesses the importance of a skill in low-carbon

jobs with respect to non-low-carbon job within an occupation, while the second assesses

the importance of the same skill across occupations as in Alabdulkareem et al. (2018),

thus identifying core occupational skills (see Appendix F.1 for details). A positive corre-

lation suggests that reskilling builds on existing skill set (specialization), while a negative

correlation implies the need to acquire skills beyond the core (diversification).

Results reveal marked heterogeneity in reskilling path across occupations (Figure 2).

STEM occupations, such as Engineers (0.07) and Scientists (0.13), exhibit positive and

statistically significant correlations, suggesting that green transitions within these occu-

pations involve deepening existing expertise as also shown by previous research (Vona

et al., 2018; Popp et al., 2024). This is expected given that climate science and environ-

mental engineering require the combination of multiple scientific domains. High-carbon

engineering roles also show a path of specialization, again suggesting the relative ease of

moving from high- to low-carbon engineering roles. Conversely, Business Specialists ex-

hibit a pronounced negative correlation (-0.15), suggesting a diversification path beyond

their core skill sets, perhaps in acquiring more technical or engineering-related skills. En-

gineering Technicians show a modest diversification pattern, although the correlation is

sensitive to the specific skill subsets used.
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Figure 2: Specialization vs diversification by occupation

However, the positive correlation disappears for Scientists when highly specific skills (Cg
sk > 0.9) are excluded

(see Appendix Figure F.3) or when we consider a subset of skill items belonging to the five key categories (see
Appendix Figure F.4).

This result is robust to the different choices of the skills included as highlighted in Appendix Figures F.3
and F.4.
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Notes: For each occupation, we plot the 400 most frequent skills mentioned in job postings , with each dot representing one
skill. For Engineers (17-2) and Construction & Extraction, we separately plot this for low-carbon job ads (green colour)
and high-carbon job ads (brown colour). A positive correlation (ρ ) between Ci

sk (y axis) and Gi
sk (x axis) indicates

specialization while a negative correlation indicates diversification.

For lower-skilled occupations, we do not observe clear specialization or diversification

patterns, despite the presence of notable skill gaps (Figure F.1). This suggests that re-

skilling for these roles may be highly context- and technology-specific, requiring context-

specific solutions.

Overall, accounting for the within occupation variation reveals larger and more complex

skills gaps than previously documented, with reskilling paths varying considerably by

occupation. Whether these gaps are reflected in wage differentials is the focus of the next

section.

5 Wage gaps
This section explores the attractiveness of low-carbon jobs by examining the wage offers

posted in job advertisements. Prior studies generally find a positive wage premium for

green jobs (Antoni et al., 2015; Muro et al., 2019a; Bluedorn et al., 2023; Curtis and

Marinescu, 2023; Kuai et al., 2025; Whittard et al., 2025). We extend this literature

by estimating wage premia for low-carbon jobs within narrowly defined occupations and

firms, and find that these are positive but modest, and have declined over time. Consistent

with evidence on skill gaps, we find that green wage premiums are higher for jobs that

require a more complex skill set.

5.1 Empirical setting

Online job vacancy data allow us to observe the wage offers posted in job ads. These

wage offers reflect hiring difficulties and demand-side labor market dynamism in particular

sectors, but may differ from the equilibrium wages, which also accounts for supply-side

factors such as the availability of candidates with the required competences. Previous

research circumvents this potential problem by combining BLS wage data with skill data

aggregated from job ads at the occupational level (Deming and Kahn, 2018; Atalay et al.,

2020; Azar et al., 2020). However, such approach would only allow estimating an average

low-carbon wage premium across-occupations (e.g. Vona et al., 2019; Bluedorn et al.,

2023). Reassuringly, Lightcast wage offers are highly correlated with BLS wage data

(Azar et al., 2020). This motivates our use of online job ads to compare wage offers

between low-carbon jobs and comparable generic jobs within the same occupation. Our

data also allows controlling for firm heterogeneity and other structural factors which is

important given that green jobs still constitute a small share of employment within most

occupations.

For example, 4% in the U.S. 2006-2014 (Vona et al., 2019), 7% in 2005–19 across 31 countries (Bluedorn
et al., 2023), and between 4% to 10% in the UK in 2011-2018 (Whittard et al., 2025).

Moreover, this study provides similar results on the estimated association of labor market concentration and
wages in local U.S. labor markets.
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We use Mincerian wage regressions (Mincer, 1974) to estimate returns to low-carbon jobs,

controlling for occupational fixed effects and other covariates for six occupations with a

higher prevalence of low-carbon ads:

log (wiot) = βlc1{i ∈ lc}+Xitµ+ γo + αt + εit, (3)

where i indexes the job ad, o occupation, and t time. The variable of interest is 1{i ∈ lc}
and associated coefficient βlc captures the average return to low-carbon jobs compared to

generic jobs in the same occupation, as we include occupational fixed effects γo (3-digit

SOC), to capture exposure to other structural factors, such trade or automation. Equation

3 is estimated separately for three sub-periods (2010-12 and 2017-19), including year

fixed effects αt to control for common shocks within each sub-period. Importantly, wage

information is available only for around 21% of job ads. Estimations are weighted by the

BLS employment at 6-digit SOC level to address sample representativeness concerns (see

Table G.1), Standard errors are clustered at the commuting zone level because postings

within the same local labor market are likely to share unobserved shocks (e.g., local

demand, cost of living, state policies), inducing correlated residuals across ads within CZs

over time.

We exploit the rich information contained in online job ads to construct a vector of

controls Xit, that rules out major sources of spurious correlation. Because such additional

information are present only for a subset of job ads, we present two specifications. In

a basic specification that maximizes the number of observations, we add only 3-digit

occupation fixed effect, dummies indicating the commuting zones where the ad is posted,

and dummy variables for skill vector length bins. In our favorite specification, we include

firm fixed effects, to account for wage differences driven by firms (Abowd et al., 1999;

Song et al., 2019) due for example to differences in rents and productivity.

Attributing a causal interpretation to estimated returns to low-carbon ads is not possible

for several reasons e.g. ads posting wage information may be self-selected, both within

and across occupations (e.g. Banfi and Villena-Roldan, 2019) and an exogenous source

of variation is absent here. Nonetheless, the most demanding specification rules out the

possibility that major sources of endogeneity, such as pre-existing firm-specific rents and

productivity levels, or occupation-level measures of exposure to other structural factors

are contaminating the estimates of low-carbon wage premium.

We are stacking 3 years to look at the dynamics and smoothen yearly fluctuations. This also allows us to
increase sample size.

In particular, five dummies corresponding to skill vector lengths of 1-4, 5-8, 9-12, 13-16, 17+ are included.
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5.2 Low-carbon wage premium

Table 4 presents the main result on the wage premium associated with low-carbon jobs

relative to similar jobs. Overall, we find that low-carbon job ads offer higher wages,

compensating for their higher skill requirement of low-carbon roles. Focusing on the

basic specification (columns 1, 3 and 5), returns are more pronounced in the earlier

period (2010-2012) compared to the later period (2017-2019), consistent with shifts in

U.S. climate policy after the green ARRA stimulus. Relative to salaries in similar jobs,

low-carbon jobs command a 7.9% premium in the first period of the ARRA green push

(column 1) and 4.5% in the second period characterized by a reduced ambition in U.S.

green policies (column 3).

Table 4: Relationship between low-carbon job and wage offer

2010-2012 2017-2019 2010-2019

(1) (2) (3) (4) (5) (6)

Job is low carbon 0.079*** 0.052*** 0.045*** 0.030*** 0.065*** 0.037***
(0.010) (0.010) (0.005) (0.004) (0.005) (0.004)

Mean wage ($2019) 66,352 70,019 58,823 57,410 60,461 59,554

Observations 759,507 273,544 2,418,122 1,600,343 4,748,666 2,578,408
R2 0.27 0.74 0.23 0.69 0.24 0.66

Year FE Yes Yes Yes Yes Yes Yes
Skill vector length FE Yes Yes Yes Yes Yes Yes
Commuting Zone FE Yes Yes Yes Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: We stack the data for the 6 key occupations identified in section 2.5, weighting them by BLS employment. Within
each column, we present coefficient estimates and standard errors corresponding to estimates of equation 3. Skill vector
length fixed effects are grouped as follows: 1-4, 5-8, 9-12, 13-16 and 17+ skills per job ad. Standard errors are clustered at
the commuting zone level.

Importantly, the low-carbon wage premium are substantially reduced when we include

firm fixed effects (columns 2, 4 and 6). Quantitatively, the size of the premium is reduced

by more than one-third compared to the basic specification: 5.2% in the first period,

3.0% in the second and to 3.7% overall. Because firm fixed effects capture rents and

productivity differentials unrelated to low-carbon tasks, this specification is the most

accurate and reliable to quantify the size of the low-carbon wage premium. By failing

to account for firm wage differentials, previous research tends to overstate the size of the

green wage premium (Vona et al., 2019; Bluedorn et al., 2023; Curtis and Marinescu,

2023; Kuai et al., 2025; Whittard et al., 2025). This finding also implies that workers may

not be fully compensated for their better skillsets in low-carbon roles.

The key role of firm fixed effects in accounting for the low-carbon wage premium suggests

some positive sorting of low-carbon work into firms that pay higher wages. That is, higher
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paying firms also exhibit a higher share of low-carbon jobs. This insight is supported by

correlating the firm share of low-carbon jobs and the firm fixed effects (see Appendix

Table G.2 and Figure G.2).

Next, we estimate the low-carbon wage premium separately for the key six occupations

defined in Section 2.5. Our estimates in Table G.8 and Figure G.1) suggest that the

low-carbon wage premium and its decline varies substantially by occupation. Most oc-

cupations display a positive premium in the early period, especially Technicians (14%),

Business Specialists (11.2%), and Installers (8.5%), but this premium declines in the

later period to 6.4%, 10% and 5.6% respectively. The decline is particularly pronounced

in high-skilled STEM occupations (i.e., Engineers and Scientists), where the low-carbon

wage premium even becomes negative in the later period. Besides on the phasing out

of the ambitious green subsidies program under the ARRA, the narrowing of the low-

carbon wage premium can reflect labour market dynamics. On the one hand, Figure 1

showed that the demand of low-carbon roles slowed down especially for high-skilled work-

ers, possibly reflecting a productivity differentials between STEM employed in low-carbon

vs. non-low-carbon jobs. On the other hand, the adjustment in the supply of low-carbon

training and educational programs may have contributed to absorb the skill-related part of

the premium, especially in low- and medium-skilled occupations. A detailed investigation

of these channels is beyond the scope this paper and is left for future research.

We also estimate wage premia for high-carbon jobs using the same specification of equation

3. Table G.9 in the Appendix shows that the high-carbon wage premium is significantly

higher than the low-carbon one in the basic specification. The premium is strikingly high

and stable (around 17%) especially in Construction and Extraction jobs, while it declined

substantially in Engineering jobs (from 26% in 2010-2012 to 6.1% in 2017-2019), possibly

reflecting the small number of high-carbon engineering ads in our sample. Notice that

the premium for low-carbon role in construction is zero Remarkably, including firm fixed

effects significantly reduces these premia and their statistical significance. This points

to rent-sharing as the key driver of the high-carbon wage premium, also highlighting the

traditional strength of unions in fossil-fuel sectors (Haywood et al., 2024; Muttitt and

Kartha, 2020; Carley and Konisky, 2020).

The declining low-carbon wage premium alongside a relatively high wage premium for

high-carbon jobs in similar occupations (i.e. construction and engineering) reinforces the

concerns around the relative attractiveness of low-carbon jobs. This might draw skilled

engineers and construction workers, in short supply, to high-carbon industries, diminishing

the talent pool to tackle climate issues (Popp et al., 2024). In particular, the presence

of large wage gaps in occupations like Engineering and Construction & Extraction where

In this case, firm fixed effects are retrieved from regressing the specification of equation 3 without the
low-carbon dummy.
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we expect transitions from brown to green, is consistent with previous findings that few

workers have transitioned from high- to low- carbon jobs so far (Curtis et al., 2023).

5.3 Returns to skill complexity and skill types

Section 4.2 documented higher skill complexity of low-carbon jobs. To reinforce this, we

estimate the differential returns to complexity in low-carbon ads by replacing the skill

vector length dummies with the logarithm of the number of skills specified in the ad

(proxy for skill complexity), interacted with the low-carbon dummy. We find significantly

higher wage offers in low-carbon ads, only for ads posting more than 2.7 skills (based

on specification (9) in Appendix Table G.10. See also Figure 3.). The low-carbon wage

premium is zero below that threshold, corresponding to the 29th percentile. This result

is consistent with the fact that low-carbon ads demand more skills, which is rewarded in

the job market.

0.0%

2.5%

5.0%

7.5%

0 1 2 3 4
log(skills count)

Figure 3: Marginal effect of job ad complexity on low-carbon wage gap
Notes: We stack the data for the 6 key occupations identified in section 2.5, weighting them by BLS employment. We
estimate specification (9) of Table G.10 across our 6 occupations of interest over the preiod 2010-2019. The plotted line
presents the marginal effect of the interaction between a job ad being low-carbon and the logarithm of its number of skills.
The shaded area indicates the 95% confidence interval, with standard errors clustered at the CZ level.

Figure G.3 shows the coefficient capturing the returns to skill complexity for low-carbon

ads by key occupation. Returns to skill complexity are generally higher in low-carbon ads

across occupations, reflecting growing demand for diverse skills in green industries. The

exceptions are Engineers and Construction workers, for whom returns to skill complexity

are lower in low-carbon jobs. Our findings resonate with research showing that more

diverse and complex skill sets are usually associated with higher earnings (Anderson,

2017; Deming, 2017; Neffke, 2019; Stephany and Teutloff, 2024). For instance, using

online freelance project data, Stephany and Teutloff (2024) show that the value of a given

skill increase with the number of other complementary skills required to perform a task,

and this effect is stronger for new skills such as those related to AI. Because both AI and
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low-carbon tasks are related to new technologies, the higher value of complex skill sets

likely reflects still ill-defined skill requirements in new work, which reward workers with

versatile skill portfolios.

Figure G.3 reports the coefficient capturing the returns to skill complexity for low-carbon

ads by key occupation. Returns to skill complexity are generally higher in low-carbon ads

across occupations, reflecting growing demand for diverse skills in green industries. The

exceptions are engineers and construction workers, for whom returns to skill complexity

are lower in low-carbon jobs. Our findings align with research showing that broader, more

complex skill sets are typically associated with higher earnings (Anderson, 2017; Deming,

2017; Neffke, 2019; Stephany and Teutloff, 2024). For example, using online freelance

project data, Stephany and Teutloff (2024) show that the value of a given skill increases

with the number of complementary skills required to perform a task, and that this effect

is stronger for new skills such as those related to AI. Because both AI and low-carbon

tasks are tied to new technologies, the higher value of complex skill sets likely reflects

still-ill-defined skill requirements in new work, which disproportionately reward workers

with versatile skill portfolios.

Lastly, drawing insights from multidimensional skill models (Guvenen et al., 2020; Dem-

ing, 2023), we explore returns to specific sets of skills in low-carbon jobs by interacting the

low-carbon ad dummy with measures of the importance of technical, cognitive (including

IT skills), and social (including managerial) skills in regressions. Appendix Table G.11

demonstrates that while technical, social and cognitive skills are valuable across all occu-

pations, returns to social skills are particularly pronounced in low-carbon jobs. In turn,

technical and cognitive skills are less valuable in low-carbon jobs. The lack of additional

returns to technical skills in low-carbon ads may be due to technical skills being inherent

to the core skill set required for the key occupations studied here, resulting in fewer high-

pay ads emphasizing them. Conversely, the high returns to social skills in low-carbon roles

align with a broader trend highlighted by Deming (2017), where social skills command

higher pay in emerging jobs such as those in low-carbon. However, these high returns to

social skills may also indicate a firm’s emphasis on projecting a green corporate image

through communication rather than substantial investments in green technologies (Chen,

2022). Future work could account for worker-job sorting and firm-level decarbonization

strategies to further evidence the specific skills and green wage premium link.

We show that our results remain qualitatively similar under multiple robustness checks

in Appendix G, including: winsorizing postings with extreme skills vector lengths (> 30)

(Table G.3); using a consistent sample (Table G.4); excluding of 3-digit occupation fixed

We use the log of the number of technical, cognitive and social skills that are advertised in the post.

These patterns are confirmed when we use a binary measure of the presence of technical, cognitive and social
skills in the ad (see Table G.12 in the Appendix).
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effects (Table G.5); adding industry (NAICS 2-digit) and education requirement fixed

effects (Table G.6); and estimating without BLS employemnt weights (Table G.7). We

also estimate a fully flexible specification that interacts the low-carbon indicator with

year fixed effects (Appendix Table G.13) as these are more general than the piecewise-

constant time structure implied by stacking years into subperiods, because they allow

arbitrary common shocks and non-parametric dynamics in the premium.

Results on wage premium are also robust to key design choices in the low-carbon skill

selection algorithm including alternative cut-offs and the inclusion or exclusion of gray

skill clusters, as shown in Appendix Table I.5 and Figure I.2.

6 Spatial gaps
One of the key challenges in delivering a “just transition” and enhancing the politi-

cal acceptability of the green transition is to ensure that displaced manual workers in

carbon-intensive industries or left-behind regions can find new jobs with similar pay and

working conditions (Vona, 2019; Weber, 2020; Hanson, 2023). Addressing their prospects

is important, also to neutralize job killing arguments used by fossil fuel lobbies to oppose

climate action (Vona, 2019).

Evidence from deindustrialization shows that negative shocks are spatially concentrated

and persistent, with multiplier effects that propagate through local demand linkages (Au-

tor et al., 2016, 2021); accordingly, regions heavily reliant on carbon-intensive activities

are likely to face larger and longer-lasting impacts (Hanson, 2023). Against this back-

ground, this section seeks to deepen understanding of the spatial distribution of high- and

low-carbon jobs focusing on low-skilled jobs, to help better manage the negative effects

of climate policies.

We compare the geography of emerging low-carbon opportunities with that of incumbent

high-carbon employment. Specifically, we juxtapose low-carbon vacancies (flows) job ads),

which proxy where new demand is arising in the short run (Deming and Kahn, 2018;

Atalay et al., 2020), with high-carbon employment (stocks), which better capture the

location of workers at risk in legacy, declining industries central to the U.S. just-transition

debate (Weber, 2020; Popp et al., 2021; Autor et al., 2021; Hanson, 2023). This approach

also aligns with recent evidence that location—rather than skill per se—poses a first-order

barrier to reallocating fossil-fuel workers into clean energy, given limited co-location of

opportunities despite substantial skill overlap (Lim et al., 2023).

Figure 4B maps the top 15% of areas with the highest shares of high-carbon, low-skilled

employment. These jobs are highly spatially concentrated around resource-extraction

In this comparison, we use new postings in all low-skilled low-carbon occupations, rather than restricting
the pool to the 2 key low-carbon manual occupations identified in section 2.5.
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centers including Wyoming, West Virginia, Oklahoma, Texas and the Appalachian region,

echoing previous findings (Weber, 2020; Popp et al., 2021). In contrast, low-carbon,

low-skilled vacancies are more dispersed (Figure 4A), consistent with the predominance

of construction and installation roles (see Appendix Table H.6) and with findings that

clean-energy hiring often occurs in licensed/certified trades with shorter formal-education

requirements and comparatively strong wage floors (Muro et al., 2019b).

Locational Gini coefficient estimates are roughly twice as high for high-carbon (0.69) as

for low-carbon (0.34) ads (Appendix Table H.1). In terms of spatial overlap, we find a

positive, statistically significant correlation between the share of high-carbon employment

and low-carbon job-ad shares (Appendix Table H.2). Weighted estimates, by ad count

or population, imply that a 1% increase in the high-carbon employment share is associ-

ated with a 0.07% increase in the low-carbon job ad share. As a robustness check, we

also compare flows to flows (low- and high-carbon job ads) and obtain similar patterns

(Appendix Table H.3).

A. B.

Share of low carbon ads

0% to 0.6% 0.6% to 0.9% 0.9% to 1.1% 1.1% to 1.5% 1.5% or more

A. B.

Share of low carbon ads

0% to 0.6% 0.6% to 0.9% 0.9% to 1.1% 1.1% to 1.5% 1.5% or more

High carbon employment
Top 15% commuting zones

Figure 4: Spatial distribution of (A) low-carbon vacancies and (B) high-carbon employ-
ment in low skilled occupations

Notes: These maps show the intensity of low and high-carbon jobs by commuting zone, averaged over the period 2010-2019,
for all low-skilled occupations (SOCs 31 to 53). Panel A shows the average share of low-carbon job vacancies; panel B shows
the the top 15% commuting zones with the highest shares of high-carbon employment. Source: Lightcast and BLS.

To benchmark magnitude, we compare this correlation to the distribution of spatial cor-

relations between shares of generic ads for any two 6-digit occupations within SOC 47

(Construction & Extraction) (Appendix Figure H.2). The correlation between low-carbon

ads and high-carbon employment exceeds 83% of within-SOC-47 correlations, and is larger

than prior estimates using solar and wind sectors (Curtis and Marinescu, 2023), thus sug-

Appendix Figure H.1 shows the spatial distribution of high-carbon job postings which instead, over-represents
growing jobs, for example in fracking.

As detailed in the notes of Table H.2, we regress the log transformed share of low-carbon jobs on log
transformed share of high-carbon jobs by commuting zone, using the log(1+x) transformation in order to avoid
dropping the CZ with zero values. In contrast, Curtis and Marinescu (2023) regresses the share of high-carbon jobs
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gests that the rise in low-carbon jobs could to some degree improve job finding rates of

displaced workers from the transition and lower reallocation costs.

However, we also find that while high-carbon employment in the U.S. concentrate in

poorer regions, low-carbon job creation is more prevalent in wealthier areas. Specifically,

a 1% increase in average per capita income is associated with an 0.2% increase in the

low-carbon ad share (Tables H.4) and a 0.1% fall in high-carbon ads (Table H.5). This in-

dicates that the low-carbon transition may exacerbate regional inequalities, raising equity

concerns consistent with Popp et al. (2021) and with evidence that geographic frictions

constrain transitions (Lim et al., 2023).

To avoid the persistent regional scarring seen in past deindustrialization episodes (Autor

et al., 2016, 2021), these patterns point to the value of targeted, place-based interventions

alongside occupation-specific reskilling (see also Muro et al., 2019b; Bartik, 2020; Rodrik

and Stantcheva, 2021). While fossil-fuel communities may attract some green job cre-

ation, further research on worker transitions—and on the design of effective place-based

support—remains warranted.

7 Conclusions
We develop a transparent, skill-based methodology to identify low-carbon jobs within

standard occupational groups and use it to provide the first job-level assessment of skill,

wage, and spatial gaps associated with the energy transition. By leveraging text from

established green classifications and applying NLP to a near-universe of U.S. online va-

cancies (2010–2019), we isolate low-carbon roles even within narrowly defined occupations

and firms, and cross-validate the resulting series against task-based measures. Our ap-

proach is flexible, and can be adapted to monitor evolving low-carbon skill needs and to

quantify reallocation frictions at varied spatial and sectoral scales, or for any technology

types.

Three results stand out from our analysis. First, low-carbon jobs systematically demand

more—and more diverse—skills than comparable non-low-carbon jobs in the same occupa-

tion (and firm), with larger within-occupation gaps than occupation-level analyses imply.

These gaps are highly occupation-specific: STEM roles tend to deepen core capabilities,

whereas business-oriented roles diversify beyond their occupational core.

Second, returns to skill complexity are higher in low-carbon roles, yet the associated wage

premia are modest and declining once occupation and firm heterogeneity are controlled

for—implying that earlier estimates overstated green premia to the extent they did not

(not log transformed) on the log transformed share of low-carbon jobs, excluding the CZ with zero values (log(x)).
When we replicate this specification, the coefficient is 0.006*** for the unweighted specification, and 0.007*** if
excluding CZ without high-carbon employment shares, exceeding the 0.004 found in Curtis and Marinescu (2023).
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net out firm wage differentials. The contrast with the higher, more persistent premia in

high-carbon jobs underscores a potential attractiveness gap that policy must address.

Third, the geography of transition is uneven. High-carbon employment remains con-

centrated in resource-extraction regions, while low-carbon hiring is more dispersed but

relatively stronger in wealthier areas. We document a positive yet modest spatial corre-

lation between incumbent high-carbon employment and emerging low-carbon vacancies,

consistent with location frictions that impede job reallocation even where skills overlap.

Taken together, our transparent methodology and detailed analysis substantially improves

the evidence on skills and wage gaps. Embedding such evidence in economic modeling

tools can improve the calibration of transition costs and inform the sequencing of cli-

mate, industrial, and workforce policies. Our results provide a stronger foundation for

designing comprehensive policy frameworks, including more nuanced insights. For ex-

ample, because the transition raises skill demands within occupations, generic upskilling

is unlikely to be cost-effective; targeted, occupation-specific retraining that distinguishes

specialization from diversification needs will be required (OECD, 2023). The modest and

falling low-carbon premia suggest complementary policies that improve job quality and

career ladders in low-carbon firms and projects. Finally, spatial frictions may warrant

place-based strategies that co-locate training and investment with at-risk communities to

curb reallocation costs and regional scarring.
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Supplemental Appendix

Appendix A Representativeness of the Lightcast dataset

Table A.1: Representativeness of Lightcast ads dataset vs. BLS employment

SOC major group Ad count Unweighted ad share BLS employment share

15 - Computer and Mathematical 26,454,718 12.3% 2.9%

11 - Management 26,436,466 12.3% 5.0%

29 - Healthcare Practitioners and Technical 25,852,786 12.0% 5.9%

13 - Business and Financial Operations 15,445,834 7.2% 5.1%

17 - Architecture and Engineering 7,135,965 3.3% 1.8%

25 - Education, Training, and Library 5,579,005 2.6% 5.8%

27 - Arts, Design, Entertainment, Sports, and Media 5,311,202 2.5% 1.3%

21 - Community and Social Service 2,541,329 1.2% 1.4%

19 - Life, Physical, and Social Science 2,280,480 1.1% 0.8%

23 - Legal 1,660,423 0.8% 0.8%

41 - Sales and Related 27,083,405 12.6% 10.6%

43 - Office and Administrative Support 23,623,473 11.0% 16.1%

53 - Transportation and Material Moving 8,513,938 4.0% 6.9%

35 - Food Preparation and Serving Related 7,786,029 3.6% 9.1%

49 - Installation, Maintenance, and Repair 7,060,358 3.3% 3.9%

51 - Production 5,766,857 2.7% 6.6%

31 - Healthcare Support 4,795,236 2.2% 2.9%

39 - Personal Care and Service 3,866,793 1.8% 3.1%

37 - Building and Grounds Cleaning and Maintenance 2,895,529 1.3% 3.2%

33 - Protective Service 2,395,055 1.1% 2.5%

47 - Construction and Extraction 2,384,535 1.1% 3.9%

45 - Farming, Fishing, and Forestry 152,616 0.1% 0.3%



Appendix B Identifying low-carbon skills and jobs

using job ads data

B.1 Implementation of the low-carbon skills selection algorithm
This section details the implementation of our data- and NLP-driven methodology for

identifying low-carbon skills, leveraging three well-established “green” textual sources: (i)

green tasks in the Occupational Information Network (O*NET), (ii) Cooperative Patent

Classification (CPC) group titles in class Y02, and (iii) trade product categories related

to green transport in PRODCOM as identified by Bontadini and Vona (2023).

Let T index the three source classifications. Each T consists of items t ∈ T (O*NET task

descriptions, CPC group titles, or PRODCOM product names), and we partition items

into a green subset Tg and a non-green subset Tng.

Step 1: Keyword extraction from textual sources

We extract keywords that distinguish low-carbon content from generic content within each

source. For each item t ∈ T (task from O*NET, CPC technology title from class Y02, or

transport product category title from PRODCOM), we run YAKE (Campos et al., 2020)

to extract uni- and bi-grams k together with item-specific relevance scores σT
k,t ∈ [0, 1].

We then aggregate to the subset level using a continuous analogue of TF–IDF. Denote by

nT
k,o the number of items in subset o ∈ {g, ng} from which k was extracted; we define

σT
k,o = log

(
nT
k,o

) ∑
t∈To

σT
k,t,o

nT
k,o

To isolate low-carbon content we work with the contrastive score

∆σT
k = σT

k,g − σT
k,ng,

taking σT
k,ng = 0 when k never appears in Tng. For each source T , we examine the

distribution of ∆σT
k and set a source-specific threshold τT at the discontinuity points

(Appendix Figure B.1).

Inclusion criterion: k enters the low-carbon keyword set iff ∆σT
k > τT . With our baseline

thresholds this yields nK = 35 low-carbon keywords (Appendix Table B.1). Sensitivity to

τT is reported in Section B.2.

Step 2: Classify skills using three complementary signals

O*NET provides information about the specific task contents of narrowly defined occupations (867 BLS
Standard Occupational Classification (SOC) occupations). The 2009 Green Economy Program marked tasks that
are “green”, which covers not only climate change-related tasks but also tasks that contribute toward non-climate
environmental problems such as waste management, remediation activities, and activities associated with local
air and water pollution. See https://www.onetcenter.org/reports/GreenTask.html for more details.

The CPC defines the Y02 class as “Technologies or applications for mitigation or adaptation against climate
change”.

Equivalently: when a keyword is only extracted from green items, its non-green relevance is set to zero.

39

https://www.onetcenter.org/reports/GreenTask.html


We classify Lightcast skills as low-carbon using three independent signals, applied to the

universe of ∼16,000 skills.

Signal A: Contrastive frequency in source texts (keyword-independent). For each skill s

and source T , we count occurrences in the green and non-green subsets, nT
s,g and nT

s,ng,

based on direct lexical matches between the Lightcast skill name and items t ∈ T .

Inclusion criterion: s is flagged as low-carbon by source T if nT
s,ng = 0 and nT

s,g lies in the

top quintile of the T -specific distribution. This signal contributes 46 skills.

Signal B: Direct lexical match to low-carbon keywords. We compare the Lightcast skill

inventory to the keyword set from Step 1.

Inclusion criterion: s is flagged if its name is an exact (case-insensitive) string match to

any keyword k. This contributes 214 skills.

Signal C: Semantic match to low-carbon keywords. To bridge vocabulary differences be-

tween sources and Lightcast, we compute sentence-transformer embeddings (Reimers and

Gurevych, 2019) for each skill s and each keyword k, and obtain pairwise semantic prox-

imity scores µs,k. To identify the skills most closely related to the low-carbon keywords,

we aggregate these scores into a single proximity score per skill µs designed to balance the

similarity to all low-carbon keywords and the high similarity with a specific low-carbon

keyword:

µs =

(∑
k µs,k

nK

)(
max

k
µs,k −

∑
k µs,k

nK

)
Inclusion criterion: Skill s is flagged if µs lies in the top percentile across all skills. This

contributes 35 skills.

This step yields an initial set of 295 unique low-carbon skills after taking the union of the

sets of low-carbon skills yielded by signals A, B and C. Sensitivity tests to definitions of

the inclusion criteria in each signal are presented in Tables I.1 and I.2.

Step 3: Coverage extension through semantic clustering

To improve coverage of near-duplicate or closely related skills, we cluster the full Lightcast

inventory using agglomerative hierarchical clustering on skill embeddings (Bouguettaya

et al., 2015). The pairwise Euclidian distance in the embeddings space is compute for

all pair skills. Groups of skills whose embeddings are located within a sphere of a radius

smaller than a given threshold are grouped in the same semantic cluster. This yields 6,668

semantically coherent clusters of skills. Sensitivity to the clustering threshold is presented

in Tables I.1 and I.2.

Given the structure of the CPC patent classification, core climate technologies (e.g., solar and wind, EVs)
often appear outside Y02; for CPC only, we therefore relax the nT

s,ng = 0 requirement.
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Inclusion criterion: any skill belonging to a cluster that contains at least one low-carbon

skill from Step 2 is also classified as low-carbon. This adds a further 98 low-carbon skills.

Step 4: Exclusion for decarbonization focus, and of false positives

To sharpen the focus on decarbonization and remove spurious matches, we implement a

targeted exclusion list comprising: (i) green but non-climate activities (e.g., water treat-

ment, environmental remediation), (ii) generic energy skills not specific to decarboniza-

tion, and (iii) fossil-fuel-related skills that are semantically close to low-carbon content.

We operationalize this via a small set of excluded Lightcast skill categories and excluded

keywords (Appendix Table B.2). We then manually drop a documented set of brand-name

false positives (e.g., Solaris, Sungard, Greenplum) listed in Appendix Table B.3.

Our final algorithm yields 389 low-carbon skills, which we refer to as low-carbon job

identifiers (Appendix Tables B.5–B.7). A job posting is classified as low-carbon if it

contains at least one such identifier. Robustness to alternative cut-offs at each step is

reported in Sections B.2 and I.

B.2 Sensitivity of low-carbon skills selection to threshold choices
Using unsupervised scoring tools such as keyword extraction and semantic matching neces-

sitates choosing cutoff levels. To assess our choice of thresholds, we first check the sensitiv-

ity of our skills selection against the thresholds. Further, sensitivity analysis demonstrate

that our main results are robust to threshold choices.

Our low-carbon skill selection algorithm includes four thresholds and we assess how ad-

justing these changes the skills considered low-carbon. Overall, the following results give

us confidence in our choice of thresholds. First, for each textual source T , we adjust the

cutoff levels τTg for the relevance score in Step 1 by 10% in both directions. As shown in

Table I.1, relaxing the threshold by 10% adds two extra skills related to Wastewater (not

relevant for low-carbon), while tightening the threshold by 10% instead removes 82 skills,

that are relevant for the low-carbon transition, thus validating our choice to select τTg

based on discontinuities in the distribution. Second, we test moving the semantic prox-

imity score threshold (top 1%) in Step 2 to 0.5% and 1.5%. The former removes 13 skills

while the latter adds 25 skills, including some very generic skills unrelated to low-carbon

(e.g. International Transportation Services) but also those relevant for low-carbon (e.g.

Wind Energy Project Management). Third, we adjust the direct text match frequency

threshold in Step 2 (top quintile) by 10% in each direction. Relaxing the threshold by 10%

adds 27 extra skills that are largely related to non-low-carbon environmental activities

like Biodiversity and Water, while tightening the threshold by 10% instead removes 23

skills, many of which are relevant for the low-carbon transition (e.g., Electric Vehicles and

Biofuel-related). Finally, we test the sensitivity to the number of cluster in the semantic
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clustering in step 2, by adjusting the threshold. Increasing it by 10% increases the number

of low-carbon skills by 24, or 6%), while reducing it by 10% decreases low-carbon skills

by 21, or 5.2%.
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Figure B.1: Distribution of YAKE scores and thresholds for low-carbon keyword inclu-
sion

Notes: Each panel corresponds to one of the three textual sources T . They represent the distribution of the green relevance
score σT

k,g as defined in Step 2 for all keyword candidates (monogram or bigram) extracted by the YAKE algorithm from the

green subset of source T . Thus, each dot is a keyword candidate. Keywords that were also extracted from the corresponding
non-green subsets are excluded according to Step 2’s inclusion criteria. The green horizontal lines represent the selected
threshold τTg in each source T .

Table B.1: List of extracted low-carbon keywords

alternative energy fuel cell rail

bicycle gas collection railway

biomass geothermal renewable energy

carbon emission ghg self-propelled

change mitigation green service vehicle

climate change green product solar

coach greenhouse gas solar energy

emissions mitigation hydroelectric technologies relating

enabling technology indirect contribution tramway

energy efficiency landfill gas van

energy efficient locomotive wind turbine

energy management photovoltaic
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Table B.2: Lightcast skill categories and keywords excluded from the low-carbon skills
donor pool

Excluded Lightcast skill categories

Fossil fuel

extraction

Gas Drilling, Geology Software, Hydraulic Fracturing,

Natural Gas, Oil Drilling, Oil Refining, Oil Reservoirs,

Oil Well Intervention, Oil Wells, Petroleum Science

Conventional

energy

production

Energy Management, Energy Solutions, Electrical

Power, Nuclear Energy, Power Plant

Non-climate

environmental

Ecology, Environmental Geology, Geology Software,

Hazardous Waste Management, Resource Management

and Restoration, Waste Management,Water Supply,

Water Testing and Treatment

Excluded

keywords

power, generation, environment, monitoring except if

match with renewable, solar and wind

Table B.3: False-positives skills matched by the NLP selection algorithm

IT Consumer Electronics, Greenplum, Green Hills Integrity, Network

File System (NFS), Solarwinds, Six Sigma, Sungard, Web

Development

Energy Electrical Control, Electric Motors, Energy Sales, Gas Exchange,

Gas Management

Policy Benefits Analysis, Human Resources, Investigative R&D, Policy

Recommendation, Site Assessments, Technology Research

Transport Aerospace Engineering, Bridge, Motor Vehicle Operation,

Passenger Vans, Transportation Systems, Vehicle Systems
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Table B.4: Skills re-integrated to test the robustness of results to the inclusion of gray
and non-climate green skills

CCS-related Geology Software

Nuclear Nuclear Energy

Non-climate

green

Ecology, Environmental Geology, Hazardous Waste

Management, Resource Management and Restoration, Waste

Management, Water Supply, Water Testing and Treatment
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Table B.5: Low-carbon job identifiers/ low-carbon skills

Abatement Projects Biomass Research Emissions Control Systems

Air Emissions Biomass Thermochemical Conversion Emissions Inspection

Air Pollution Control Biomass Transformation Emissions Inventories

Air Quality Control Blower Doors Emissions Management

Air Quality Regulations Building Performance Emissions Mitigation

Air Quality Remediation Carbon Accounting Emissions Reduction

Air Quality Standards Carbon Asset Management Emissions Reduction Strategy

Alternative Energy Carbon Emissions Reduction Emissions Standards

Alternative Energy Design Carbon Footprint Emissions Testing

Alternative Energy Evaluation Carbon Footprint Reduction Energy - Efficient Systems

Alternative Fuel Vehicles Carbon Management Energy Conservation

Alternative Fuels Carbon Offsets Energy Conservation Measures

Automotive Energy Management Carbon Reduction Energy Conversion

Benefits Research Clean Energy Energy Cost Reduction

Bicycle Planning Climate Analysis Energy Efficiency

Bike Industry Knowledge Climate Change Energy Efficiency Analysis

Biodiesel Climate Change Analysis Energy Efficiency Assessment

Biodiesel Development Climate Change Impact Energy Efficiency Consultation

Biodiesel Industry Knowledge Climate Change Mitigation Intiatives Energy Efficiency Improvement

Biodiesel Production Climate Change Policies Energy Efficiency Products

Biodiesel Research Climate Change Principles Energy Efficiency Research

Biodiesel Technology Climate Change Processes Energy Efficiency Services

Biofuel Product Development Climate Change Programs Energy Efficiency Supervision

Biofuel Production Climate Change Research Energy Efficiency Technologies

Biofuels Applications Climate Change Simulations Energy Efficient Building

Biofuels Development Climate Data Analysis Energy Efficient Home Improvement

Biofuels Extraction Climate Information Energy Efficient Lighting

Biofuels Plant Safety Climate Management Research Energy Efficient Operations

Biofuels Processing Climate Outreach Energy Efficient Transportation

Biofuels Processing Equipment Climate Policy Energy Law

Biofuels Quality Assessment Climate Research Energy Loss Calculation

Biofuels Research Climate Systems Energy Loss Reduction

Biofuels Research and Development Climate Theory Energy Outreach

Biofuels Technology Commercial Solar Projects Energy Reduction

Biomass Commercial Solar Sales Energy Saving Products

Biomass Conversion Concentrated Photovoltaic Technology Energy Savings Calculations

Biomass Determination Cooling Efficiency Energy Supply Side Savings

Biomass Equipment Cost-Benefit Studies Energy-Efficient Appliances

Biomass Feedstock Measurement Direct Methanol Fuel Cells Equipment Effectiveness

Biomass Fuel Gasification Systems Ecological Consulting Equipment Efficiency

Biomass Gasification Processes Efficient Transportation Ethanol

Biomass Plant Equipment Electric Vehicle Ethanol Distillation

Biomass Pretreatment Evaluation Electricity Regulation Ethanol Recovery Methods

Biomass Processing Equipment Emission Reduction Projects Facility Improvement

Biomass Production Emissions Analysis Facility Remodeling

Abatement Projects Biomass Research

Air Emissions Biomass Thermochemical Conversion

Air Pollution Control Biomass Transformation

Air Quality Control Blower Doors

Air Quality Regulations Building Performance
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Table B.6: Low-carbon job identifiers/ low-carbon skills (cont.)

Facility Renovation Green Energy Locomotive Safety Standards

Fuel Cell Green Energy Marketing Loose Insulation

Fuel Cell Analysis Green Energy Promotion Low Carbon Projects

Fuel Cell Applications Green Job Development Low Carbon Solutions

Fuel Cell Assembly Green Manufacturing Low Energy Buildings

Fuel Cell Design Green Marketing Methane Gas Collection System

Fuel Cell Development Green Plumbing Mitigation Projects

Fuel Cell Engineering Green Plumbing Equipment Installation Natural Lighting Systems

Fuel Cell Generator Green Procurement Optical Data Storage

Fuel Cell Modeling Green Real Estate Organic Photovoltaics (OPV)

Fuel Cell Performance Improvement Green Retail PV System Design and Drafting

Fuel Cell Research Green Retrofitting PVNS

Fuel Cell System Design Green Roof Design PVsyst

Fuel Cell Testing Green Roof Installation Performance Yield

Fuel Cell Testing Equipment Green Roofing Photovltaic Mounting Solutions

Fuel Cell Theory Green Stocks Photovoltaic (PV) Energy Production

Fuel Cell Validation Green Strategy Photovoltaic (PV) Equipment

Fuel Cell Vehicles Green Supplier Photovoltaic (PV) Systems

Fuel Efficiency Green Techniques Photovoltaic Energy

Gas Collection Green Technology Photovoltaic Solutions

Gas Collection Equipment Green Transportation Photovoltaic System Design

Gas Collection Systems Green Walls Photovoltiac (PV) Module Evaluation

Geothermal Greenhouse Gas Pollution Control

Geothermal Energy Plants Greenhouse Gas (GHG) Emissions Pollution Control Equipment

Geothermal Heat Systems Greenhouse Gas Accounting Pollution Control Systems

Geothermal Loop Systems Heating Efficiency Pollution Prevention

Geothermal Plant Equipment Heavy Rail Pollution Regulation

Geothermal Plant Operations Heavy Rail Transit Systems Polymer Electrolyte Membrane Fuel Cells

Geothermal Production High Speed Rail Public Transit Operations

Geothermal Production Management Industrial Ecology Public Transit Systems

Geothermal Sales Insulating Materials Public Transportation System

Global Warming Insulation Rail Equipment Maintenance

Global Warming Pollution Insulation Efficiency Rail Equipment Repair

Green Architecture Insulation Installation Rail Industry Knowledge

Green Automotive Technologies Landfill Design Rail Operations

Green Building Landfill Gas Collection Rail Safety

Green Building Standards Landfill Gas Collection System Operation Rail-Track Laying

Green Certified Construction Practices Landfill Inspection Railroad Conducting

Green Chemistry Landfill Operations Railroad Design

Green Chemistry Methods Light Rail Railroad Engineering

Green Communities Light Rail Transit Systems Railroad Safety

Green Contractor Lighting Systems Railway Signaling

Green Design Locomotive Engineering Railway Systems

Green Distributor Locomotive Inspection Renewable Energy

Green Education Locomotive Safety Renewable Energy Consultation

Facility Renovation Green Energy

Fuel Cell Green Energy Marketing

Fuel Cell Analysis Green Energy Promotion

Fuel Cell Applications Green Job Development

Fuel Cell Assembly Green Manufacturing
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Table B.7: Low-carbon job identifiers/ low-carbon skills (cont.)

Renewable Energy Development Solar Module Assembly Trams

Renewable Energy Equipment Solar PV Generation Systems Transit Systems

Renewable Energy Industry Knowledge Solar PV Hot Water Heating Systems Weatherization

Renewable Energy Installation Solar Panel Assembly Weatherization Installation

Renewable Energy Markets Solar Panel Attachment Wind Commissioning

Renewable Energy Supply Solar Panel Fitting Wind Consultation

Renewable Energy Systems Solar Panels Wind Energy Engineering

Renewable Resources Solar Photovoltaic Business Development Wind Energy Industry Knowledge

Residential Energy Conservation Solar Photovoltaic Design Wind Energy Operations

Residential Energy Efficiency Solar Photovoltaic Engineering Wind Energy Operations Management

Retrofitting Solar Photovoltaic Installation Wind Farm Analysis

Silicon Solar Cell Solar Photovoltaic Panels Wind Farm Construction

Smart Grid Solar Photovoltaic Performance Improvement Wind Farm Design

Smoke Emissions Reduction Solar Photovoltaic Research Wind Field Operations

Soil Tillers Solar Photovoltaic Technology Wind Generator Assembly

Solar Application Solar Power Electrical Work Wind Integration Studies

Solar Array Production Calculation Solar Power Purchase Agreement Sales Wind Power

Solar Boilers Solar Power System Design Wind Power Development

Solar Cell Solar Products Wind Turbine Construction

Solar Cell Design Solar Purchasing Management Wind Turbine Control System

Solar Cell Equipment Solar Roofing System Installation Wind Turbine Equipment

Solar Cell Manufacturing Solar Roofs Wind Turbine Equipment Testing

Solar Cell Manufacturing Equipment Solar Sales Wind Turbine Fabrication

Solar Collector Installation Solar Sales Management Wind Turbine Performance Improvement

Solar Consultation Solar Start Ups Wind Turbine Production

Solar Contractor Solar Systems Wind Turbine Service

Solar Design Solar Technology Wind Turbine Technology

Solar Development Solar Thermal Installation Wind Turbines

Solar Electric Installation Solar Thermal Systems Zero- Energy Buildings

Solar Energy Solar and Wind Energy

Solar Energy Components Spray Foam (Insulation)

Solar Energy Industry Knowledge Storage Management Technologies

Solar Energy Installation Management Streetcars

Solar Energy System Development Sustainability Campaigns

Solar Energy System Installation Sustainability Consulting

Solar Energy Systems Sustainability Marketing

Solar Energy Systems Engineering Sustainable Architecture

Solar Engineering Sustainable Design

Solar Equipment Sustainable Energy

Solar Farm Sustainable Engineering

Solar Heat Absorption Reduction Sustainable Manufacturing

Solar Heating Sustainable Materials

Solar Hot Water Heating Systems Thermochemical Conversion

Solar Installation Thermochemical Research

Solar Manufacturing Tillage

Renewable Energy Development Solar Module Assembly

Renewable Energy Equipment Solar PV Generation Systems

Renewable Energy Industry Knowledge Solar PV Hot Water Heating Systems

Renewable Energy Installation Solar Panel Assembly

Renewable Energy Markets Solar Panel Attachment
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Table B.8: Top 50 low-carbon identifiers observed in job ads

Low carbon identifier Ad count Low carbon identifier Ad count

Insulation 226,247 Transit Systems 24,469

Energy Efficiency 190,005 Pollution Control 24,326

Energy Conservation 151,033 Fuel Efficiency 24,003

Renewable Energy 150,605 Insulation Installation 23,948

Retrofitting 109,361 Green Building 23,798

Solar Energy 66,983 Fuel Cell 23,616

Climate Change 49,415 Public Transit Systems 22,537

Clean Energy 42,839 Electric Vehicle 22,392

Solar Sales 42,122 Equipment Effectiveness 21,774

Wind Turbines 40,848 Energy Reduction 21,686

Pollution Prevention 40,488 Alternative Fuels 21,507

Wind Power 39,313 Geothermal 18,448

Equipment Efficiency 38,109 Greenhouse Gas 17,757

Building Performance 37,053 Solar Installation 17,349

Air Emissions 36,787 Weatherization 17,013

Smart Grid 31,704 Sustainable Energy 16,088

Solar Panels 31,610 Energy Conservation Measures 15,357

Photovoltaic (PV) Systems 29,799 Solar Systems 15,068

Alternative Energy 29,668 Green Energy 14,848

Sustainable Design 28,336 Biomass 14,094

Air Pollution Control 28,197 Emissions Management 13,845

Emissions Testing 27,761 Facility Improvement 13,526

Ethanol 27,722 Rail Operations 12,309

Efficient Transportation 26,194 Solar Consultation 11,357

Light Rail 25,897 Locomotive Engineering 10,355
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Table B.9: Example of low-carbon ads

Title SOC Location Degree Annual wage Skills

Senior Planner 13-1121 - Meeting,

Convention, and

Event Planners

Upper

Marlboro,

Maryland

Master’s 51k - 88k Bicycle Planning, Editing,

Environmental Science, Grant

Applications, Planning,

Transit-Oriented Development,

Writing

Facilities

Planner

17-1011 -

Architects, Except

Landscape and

Naval

Tallahassee,

Florida

Bachelor’s 35k - 40k Green Building, Budgeting, Capital

Planning, Construction Management,

Planning, Project Management,

Spreadsheets, Urban Planning

Chemical

Engineer

17-2041 - Chemical

Engineers

Houston,

Texas

Bachelor’s 180k - 200k Energy Efficiency, Business

Acumen, Chemical Engineering,

Performance Appraisals, Process

Modeling, Project Management,

Simulation, Technical Support

Printer/Electronics

Technician

17-3023 - Electrical

and Electronics

Engineering

Technicians

Denver,

Colorado

Associate’s 51k - 51k Retrofitting, AC/DC Drives and

Motors, Break/Fix, Computer

Literacy, Description and

Demonstration of Products, Fault

Codes, Lifting Ability, Mechanical

Repair, Microsoft Office, Printers,

Repair, Troubleshooting

Post-Doctoral

Research

Scholar-

Chemical

Engineering

19-2011 -

Astronomers

Richmond,

Virginia

PhD 59k - 85k Green Chemistry, Chemical

Engineering, Chemistry,

Communication Skills, Design of

experiments (DOE),

High-Performance Liquid

Chromatography (HPLC), Lab Safety,

Laboratory Safety And Chemical

Hygiene Plan, Mentoring, Research,

Teamwork / Collaboration, Writing

Lead Solar

Installer

47-2231 - Solar

Photovoltaic

Installers

Rancho

Cuca-

monga,

California

High

School

37k - 41k Solar Installation, Customer

Contact, Electrical Experience, Fall

Protection, Operations Management,

Physical Abilities, Roofing, Scheduling

Maintenance

Mechanic

49-9099 -

Installation,

Maintenance, and

Repair Workers,

All Other

Battle

Creek,

Michigan

High

School

19k - 26k Energy Efficiency, Commercial

Driving, Repair, Troubleshooting

Technical Issues
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Table B.10: High-carbon occupations (SOC codes) and sectors (NAICS codes)

SOC 17-2151 Mining and Geological Engineers

codes 17-2171 Petroleum Engineers

47-5 Extraction Workers

NAICS 211 Oil and Gas Extraction

codes 2121 Coal Mining

213111 Drilling Oil and Gas Wells

213112 Support Activities for Oil and Gas Operations

2212 Natural Gas Distribution

23712 Oil and Gas Pipeline and Related Structures

32411 Petroleum Refineries

32412 Asphalt Paving, Roofing, and Saturated Materials

324191 Petroleum Lubricating Oil and Grease Manufacturing

4247 Petroleum and Petroleum Products Merchant

44711 Gasoline stations with convenience stores

44719 Other Gasoline Stations

45431 Fuel dealers

486 Pipeline Transportation
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Appendix C Occupational shares of low- and high-

carbon ads
Table C.2 reports the number of low-carbon ads and their employment-weighted share by

2-digit SOC occupation. While low-carbon jobs are found across a wide range of occupa-

tions (see also Figure C.1 for the evolution of the share of low-carbon ads by occupation

and sectors (see Appendix Table C.4), five 2-digit SOC groups exhibit notably higher

shares: Business & Finance (1.6%); Architecture & Engineering (4.1%); Life, Physical

& Social Science (3.3%); Construction & Extraction (4.4%); Installation, Maintenance &

Repair (2.6%).

A more granular examination at the 3-digit SOC level for high-skilled occupations (Table

C.3) reveals substantial within-occupation heterogeneity. For instance, within the Busi-

ness & Finance occupations (SOC 13), a high share of low-carbon ads is concentrated

among Business Specialists (13-1). Within Life, Physical, & Social Science (SOC 19),

Physical Scientists (19-2) stand out with a high share of 8%. In Architecture & Engineer-

ing (SOC 17), Architects, Engineers (17-2), and Technicians (17-3) all display intensities

above 3%, with the latter two also showing large absolute numbers of low-carbon vacan-

cies. The corresponding distribution of broad-skill shares within these groups is reported

in Appendix Table F.5.

Table C.1: Share of high-carbon ads by SOC minor group (3-digits), weighted by BLS
employment

SOC minor group High carbon ads Share within occupation

17-2 - Engineers 111,600 4.1%

47-1 - Supervisors of Construction and Extraction Workers 4,077 3.4%

47-2 - Construction Trades Workers 14,478 0.8%

47-3 - Helpers, Construction Trades 82 0.1%

47-4 - Other Construction and Related Workers 4,234 2.2%

47-5 - Extraction Workers 101,215 100.0%

Total 235,686 0.3%

Notes: This table shows the number and share of high-carbon ads by 3-digit SOC group, from 2010 to 2019, weighted by
BLS employment. Source: BLS and Lightcast.

We follow the standard SOC classification in defining high- and low-skilled occupations: major groups 11-29
are classified as high-skilled, while major groups 31-53 are classified as low-skilled. See Appendix D for the full
list.
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Table C.2: Low-carbon ads and weighted shares by 2-digit SOC group

SOC major group Low carbon ads Share within occupation

47 - Construction and Extraction 119,317 4.4%

17 - Architecture and Engineering 279,902 4.1%

19 - Life, Physical, and Social Science 53,152 3.3%

49 - Installation, Maintenance, and Repair 208,420 2.6%

13 - Business and Financial Operations 109,839 1.6%

45 - Farming, Fishing, and Forestry 1,389 1.3%

11 - Management 295,183 1.3%

51 - Production 60,383 1.0%

53 - Transportation and Material Moving 61,903 1.0%

33 - Protective Service 17,763 0.8%

23 - Legal 10,536 0.6%

15 - Computer and Mathematical 144,742 0.6%

27 - Arts, Design, Entertainment, Sports, and Media 21,746 0.4%

41 - Sales and Related 154,203 0.4%

37 - Building and Grounds Cleaning and Maintenance 12,362 0.4%

43 - Office and Administrative Support 97,811 0.4%

21 - Community and Social Service 4,423 0.3%

25 - Education, Training, and Library 18,970 0.2%

39 - Personal Care and Service 7,078 0.2%

29 - Healthcare Practitioners and Technical 35,582 0.1%

35 - Food Preparation and Serving Related 9,618 0.1%

31 - Healthcare Support 7,433 0.1%

Total 1,731,755 0.9%

Notes: This table shows the number and weighted (by BLS employment) shares of low-carbon jobs by 2-digit SOC group,
from 2010 to 2019. The occupations are ranked by the shares, separately for high-skilled and low-skilled groups.
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53 − Transportation and Material Moving
51 − Production

49 − Installation, Maintenance, and Repair
47 − Construction and Extraction

45 − Farming, Fishing, and Forestry
43 − Office and Administrative Support

41 − Sales and Related
39 − Personal Care and Service

37 − Building and Grounds Cleaning and Maintenance
35 − Food Preparation and Serving Related

33 − Protective Service
31 − Healthcare Support

29 − Healthcare Practitioners and Technical
27 − Arts, Design, Entertainment, Sports, and Media

25 − Education, Training, and Library
23 − Legal

21 − Community and Social Service
19 − Life, Physical, and Social Science

17 − Architecture and Engineering
15 − Computer and Mathematical

13 − Business and Financial Operations
11 − Management

0% 1% 2% 3% 4%

Figure C.1: Low-carbon ads intensity by occupation (2010-2019)

Table C.3: Share of low-carbon ads by SOC minor group (3-digits), weighted by BLS
employment

SOC minor group Low carbon ads Share within occupation

13-1 - Business Operations Specialists 89,424 2.4%

13-2 - Financial Specialists 20,415 0.4%

17-1 - Architects, Surveyors, and Cartographers 11,967 4.2%

17-2 - Engineers 213,423 4.3%

17-3 - Engineering and Mapping Technicians 54,512 3.6%

19-1 - Life Scientists 10,584 2.0%

19-2 - Physical Scientists 21,053 7.3%

19-3 - Social Scientists and Related Workers 8,422 2.0%

19-4 - Life, Physical, and Social Science Technicians 13,093 2.0%

Total 1,731,755 0.9%
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Table C.4: Share of low-carbon ads by NAICS sector (unweighted averages, 2010-2019)

Ad count Unweighted ad share

NAICS2 Generic Low carbon High carbon Generic Low carbon High carbon

11 - ”Agriculture, Forestry, Fishing and Hunting” 130,495 2,741 186 97.8% 2.1% 0.1%

21 - ”Mining, Quarrying, and Oil and Gas Extraction” 554,701 9,139 80,732 86.1% 1.4% 12.5%

22 - Utilities 594,468 78,818 8,816 87.2% 11.6% 1.3%

23 - Construction 1,998,827 79,385 4,358 96.0% 3.8% 0.2%

311 - Food Manufacturing 673,389 7,840 132 98.8% 1.2% 0.0%

312 - Beverage and Tobacco Product Manufacturing 384,732 2,559 1,411 99.0% 0.7% 0.4%

313 - Textile Mills 731 6 0 99.2% 0.8% 0.0%

314 - Textile Product Mills 52,939 547 21 98.9% 1.0% 0.0%

315 - Apparel Manufacturing 83,465 63 2 99.9% 0.1% 0.0%

316 - Leather and Allied Product Manufacturing 5,976 6 0 99.9% 0.1% 0.0%

321 - Wood Product Manufacturing 110,355 5,245 425 95.1% 4.5% 0.4%

322 - Paper Manufacturing 103,124 875 84 99.1% 0.8% 0.1%

323 - Printing and Related Support Activities 105,554 282 80 99.7% 0.3% 0.1%

324 - Petroleum and Coal Products Manufacturing 122,196 5,449 23,841 80.7% 3.6% 15.7%

325 - Chemical Manufacturing 1,975,635 17,131 1,258 99.1% 0.9% 0.1%

326 - Plastics and Rubber Products Manufacturing 78,987 722 7 99.1% 0.9% 0.0%

327 - Nonmetallic Mineral Product Manufacturing 210,998 4,606 1,225 97.3% 2.1% 0.6%

331 - Primary Metal Manufacturing 149,109 2,058 820 98.1% 1.4% 0.5%

332 - Fabricated Metal Product Manufacturing 284,661 2,231 167 99.2% 0.8% 0.1%

333 - Machinery Manufacturing 923,673 19,650 540 97.9% 2.1% 0.1%

334 - Computer and Electronic Product Manufacturing 1,937,570 25,997 877 98.6% 1.3% 0.0%

335 - ”Electrical Equipment, Appliance, and Component Manufacturing” 171,811 6,332 84 96.4% 3.6% 0.0%

336 - Transportation Equipment Manufacturing 1,715,792 31,410 954 98.1% 1.8% 0.1%

337 - Furniture and Related Product Manufacturing 97,321 3,800 90 96.2% 3.8% 0.1%

339 - Miscellaneous Manufacturing 498,216 2,293 58 99.5% 0.5% 0.0%

42 - Wholesale Trade 1,587,068 20,628 1,083 98.7% 1.3% 0.1%

441 - Motor Vehicle and Parts Dealers 1,507,096 9,367 34 99.4% 0.6% 0.0%

442 - Furniture and Home Furnishings Stores 442,550 357 72 99.9% 0.1% 0.0%

443 - Electronics and Appliance Stores 761,021 446 17 99.9% 0.1% 0.0%

444 - Building Material and Garden Equipment and Supplies Dealers 2,008,522 5,953 14 99.7% 0.3% 0.0%

445 - Food and Beverage Stores 1,911,413 3,497 159 99.8% 0.2% 0.0%

446 - Health and Personal Care Stores 1,568,805 852 30 99.9% 0.1% 0.0%

447 - Gasoline Stations 452,843 472 1,058 99.7% 0.1% 0.2%

448 - Clothing and Clothing Accessories Stores 2,089,809 1,286 92 99.9% 0.1% 0.0%

451 - ”Sporting Goods, Hobby, Book, and Music Stores” 1,089,087 6,611 73 99.4% 0.6% 0.0%

452 - General Merchandise Stores 4,684,056 3,180 633 99.9% 0.1% 0.0%

453 - Miscellaneous Store Retailers 1,152,443 6,438 128 99.4% 0.6% 0.0%

454 - Nonstore Retailers 553,924 4,404 253 99.2% 0.8% 0.0%

481 - Air Transportation 325,821 1,554 49 99.5% 0.5% 0.0%

482 - Rail Transportation 79,758 12,016 490 86.4% 13.0% 0.5%

483 - Water Transportation 51,745 486 40 99.0% 0.9% 0.1%

484 - Truck Transportation 1,987,524 11,890 553 99.4% 0.6% 0.0%

485 - Transit and Ground Passenger Transportation 216,968 8,712 70 96.1% 3.9% 0.0%

486 - Pipeline Transportation 57,010 2,308 8,661 83.9% 3.4% 12.7%

487 - Scenic and Sightseeing Transportation 923 8 0 99.1% 0.9% 0.0%

488 - Support Activities for Transportation 231,983 1,784 347 99.1% 0.8% 0.1%

491 - Postal Service 100,474 355 1 99.6% 0.4% 0.0%

492 - Couriers and Messengers 505,647 44,404 44 91.9% 8.1% 0.0%

493 - Warehousing and Storage 90,975 566 30 99.3% 0.6% 0.0%

51 - Information 6,017,082 33,920 10,443 99.3% 0.6% 0.2%

52 - Finance and Insurance 14,480,011 29,933 1,967 99.8% 0.2% 0.0%

53 - Real Estate and Rental and Leasing 2,944,807 20,735 674 99.3% 0.7% 0.0%

54 - ”Professional, Scientific, and Technical Services” 14,800,810 179,189 15,435 98.7% 1.2% 0.1%

55 - Management of Companies and Enterprises 253,423 2,259 96 99.1% 0.9% 0.0%

56 - Administrative and Support and Waste Management and Remediation Services 8,384,872 78,714 3,758 99.0% 0.9% 0.0%

61 - Educational Services 8,810,942 60,284 622 99.3% 0.7% 0.0%

62 - Health Care and Social Assistance 25,549,338 34,045 6,431 99.8% 0.1% 0.0%

71 - ”Arts, Entertainment, and Recreation” 1,276,173 6,704 261 99.5% 0.5% 0.0%

72 - Accommodation and Food Services 10,112,974 53,399 1,543 99.5% 0.5% 0.0%

81 - Other Services (except Public Administration) 2,780,061 35,831 679 98.7% 1.3% 0.0%

92 - Public Administration 5,018,504 86,727 3,406 98.2% 1.7% 0.1%
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Appendix D High- and low-skilled occupation

High skilled occupations

11 - Management Occupations

13 - Business and Financial Operations Occupations

15 - Computer and Mathematical Occupations

17 - Architecture and Engineering Occupations

19 - Life, Physical, and Social Science Occupations

21 - Community and Social Service Occupations

23 - Legal Occupations

25 - Educational Instruction and Library Occupations

27 - Arts, Design, Entertainment, Sports, and Media Occupations

29 - Healthcare Practitioners and Technical Occupations

Low skilled occupations

31 - Healthcare Support Occupations

33 - Protective Service Occupations

35 - Food Preparation and Serving Related Occupations

37 - Building and Grounds Cleaning and Maintenance Occupations

39 - Personal Care and Service Occupations

41 - Sales and Related Occupations

43 - Office and Administrative Support Occupations

45 - Farming, Fishing, and Forestry Occupations

47 - Construction and Extraction Occupations

49 - Installation, Maintenance, and Repair Occupations

51 - Production Occupations

53 - Transportation and Material Moving Occupations
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Appendix E Evolution of low-carbon job shares

19−2 − Physical Scientists 47 − Construction and
Extraction

49 − Installation,
Maintenance, and Repair

13−1 − Business Operations
Specialists 17−2 − Engineers 17−3 − Engineering and

Mapping Technicians

2010 2014 2018 2010 2014 2018 2010 2014 2018

2010 2014 2018 2010 2014 2018 2010 2014 2018
0%

2%

5%

8%

0%

2%

5%

8%

Weighted by BLS employment Unweighted

a)

0.0%

0.1%

0.2%

0.3%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Total Low skill High skill

b)

Figure E.1: Evolution of low-carbon (a) and high-carbon (b) vacancy shares in the U.S.
by occupation (2010-2019)

Notes: Panel a): Plotted shares of low-carbon ads are first calculated at the 6-digit SOC occupation level as the ratio
between the number of low-carbon ads and the total ads within a 6-digit occupation, then averaged for each reported SOC
grouping weighing by 6-digit employment obtained from the BLS. Panel b): the same methodology is applied using the
definition of high-carbon ads described in Table B.10. Source: Lightcast and BLS.
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Table E.1: Share of low-carbon ads by year, weighted by BLS employment (2010-2019)

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Overall

All 0.83% 0.97% 0.94% 0.80% 0.81% 0.87% 0.85% 0.86% 0.87% 0.87%

Overall - High skill

All 0.33% 0.39% 0.34% 0.29% 0.29% 0.29% 0.28% 0.26% 0.26% 0.27%

13-1 - Business Operations Specialists 0.09% 0.13% 0.10% 0.07% 0.07% 0.07% 0.06% 0.05% 0.05% 0.06%

17-2 - Engineers 0.06% 0.06% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%

17-3 - Engineering and Mapping Technicians 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02%

Others 0.16% 0.18% 0.17% 0.15% 0.16% 0.15% 0.14% 0.14% 0.14% 0.15%

Overall - Low skill

All 0.50% 0.58% 0.59% 0.52% 0.52% 0.58% 0.58% 0.61% 0.60% 0.60%

47 - Construction and Extraction 0.16% 0.16% 0.15% 0.15% 0.16% 0.18% 0.20% 0.20% 0.18% 0.18%

49 - Installation, Maintenance, and Repair 0.08% 0.10% 0.09% 0.11% 0.09% 0.09% 0.10% 0.12% 0.12% 0.11%

53 0.07% 0.07% 0.09% 0.06% 0.06% 0.07% 0.07% 0.07% 0.07% 0.07%

Within occupation group

Others 0.19% 0.25% 0.26% 0.20% 0.21% 0.23% 0.21% 0.22% 0.23% 0.24%

13-1 - Business Operations Specialists 2.96% 4.01% 3.21% 2.31% 2.07% 2.32% 2.04% 1.62% 1.71% 1.85%

17-2 - Engineers 5.15% 5.49% 4.53% 4.03% 3.84% 4.16% 4.12% 3.92% 3.96% 3.93%

17-3 - Engineering and Mapping Technicians 3.57% 4.15% 3.45% 3.27% 3.65% 3.44% 3.65% 3.51% 3.38% 3.53%

19-2 - Physical Scientists 7.70% 8.56% 7.29% 7.11% 7.28% 7.98% 6.31% 6.55% 7.12% 6.87%

47 - Construction and Extraction 3.99% 4.11% 3.85% 3.84% 3.97% 4.69% 5.03% 5.20% 4.61% 4.63%

49 - Installation, Maintenance, and Repair 2.10% 2.51% 2.35% 2.71% 2.32% 2.39% 2.57% 3.09% 3.13% 2.78%

Notes: Table E.1 presents the annual share low-carbon ads for each of the SOC occupational groups harboring the most
low-carbon positions. low-carbon shares are calculated at the SOC 6-digit level then weighted using mean employment by
6-digits occupation for the period 2010-2019 obtained from the BLS Occupational Employment and Wage Statistics.
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Appendix F Skill gap

Table F.1: Keywords defining broad skills

Broad skill Keywords Lightcast skills

Cognitive
problem solving, research, analytical, critical thinking,

math, statistics
123

IT
Burning Glass Technologies Information Technology skill

cluster family
1,588

Management

project management, system analysis, system evaluat*,

updat* kno*, using know*, consultation* advice*,

supervisory, leadership, management, mentoring, staff

484

Social
communication, teamwork, collaboration, negotiation,

presentation
78

Technical

engineer*, technolog*, design, build*, construct*,

mechanic*, draft, lay* out, specfiy* techn* part*,

specfiy* techn* devic*, specify*, techn* equip*, estimat*

quant* character*, technic*

133
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Cognitive IT Management Social Technical

13−1 − Business
Operations
Specialists

17−2 − Engineers

17−3 − Engineering
and Mapping
Technicians

19−2 − Physical
Scientists

47 − Construction
and Extraction

49 − Installation,
Maintenance, and
Repair

1 2+ 1 2+ 1 2+ 1 2+ 1 2+

0%

10%

20%

30%

0%

10%

20%

30%

0%

10%

20%

30%

0%

10%

20%

30%

0%

10%

20%

30%

0%

10%

20%

30%

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

Generic High carbon Low carbon

Figure F.1: Differences in broad skills by occupation

Notes: Each panel represents an occupation (vertical) and a broad skill category (horizontal). For each job type (generic,
low- or high-carbon), each panel shows the share of job ads that contains exactly one or two or more (2+, intensive margin)
skills in that broad skill category. Percentages reported correspond to unweighted shares of ads obtained directly from the
sample, as these refer to within-occupation shares. See text for full description including how the five broad skill categories
are defined.
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Table F.2: Skill gap

Cognitive IT Management Social Technical

1 2+ 1 2+ 1 2+ 1 2+ 1 2+

13-1 - Business Operations Specialists

Generic 26.1% 10.4% 21.9% 29.9% 26.9% 23.4% 28.8% 28.9% 16.9% 2.2%

Low carbon 26.9% 11.3% 21.4% 27.7% 26.5% 29.3% 28.1% 33.5% 22.0% 8.0%

17-2 - Engineers

Generic 26.3% 7.4% 20.3% 28.1% 25.2% 14.5% 27.1% 20.9% 26.2% 21.0%

High carbon 25.2% 5.6% 22.2% 16.9% 29.0% 14.5% 30.0% 20.7% 27.6% 23.5%

Low carbon 28.0% 8.0% 23.6% 25.1% 30.2% 21.8% 31.2% 25.8% 29.7% 29.3%

17-3 - Engineering and Mapping Technicians

Generic 17.7% 3.3% 16.3% 17.1% 14.3% 5.6% 21.5% 12.4% 20.6% 9.6%

Low carbon 21.7% 4.2% 19.7% 21.1% 24.4% 12.4% 28.7% 18.5% 27.7% 15.8%

19-2 - Physical Scientists

Generic 34.2% 17.3% 15.9% 12.0% 20.3% 10.6% 25.3% 21.9% 15.9% 3.4%

Low carbon 37.2% 13.5% 18.4% 18.7% 26.1% 29.8% 27.3% 28.1% 22.6% 7.9%

47 - Construction and Extraction

Generic 6.7% 1.2% 5.5% 2.6% 8.6% 3.2% 12.2% 4.5% 13.5% 3.2%

High carbon 15.3% 1.8% 11.6% 12.6% 11.2% 4.7% 20.9% 9.1% 15.1% 3.4%

Low carbon 9.4% 1.1% 10.2% 3.7% 13.8% 4.4% 13.9% 11.2% 13.5% 5.1%

49 - Installation, Maintenance, and Repair

Generic 12.7% 1.9% 9.4% 7.5% 13.4% 6.6% 21.5% 9.8% 13.8% 3.5%

Low carbon 12.8% 2.3% 13.2% 9.0% 24.8% 9.6% 28.0% 16.4% 24.9% 5.7%

Notes: Within each occupation and ad category (generic or low-carbon), the value listed reports the unweighted sample
share of ads containing exactly one, or 2 or more skills in each of the five broad skill categories. E.g. 25.2% of generic
Business and Operations Specialists ads require exactly one Cognitive skill.
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Table F.3: Skill gap magnitude across commuting zones

i. Extensive margin

SOC group Cognitive IT Management Social Technical

a) Low carbon vs Generic ads

13-1 - Business Operations Specialists 0.90% -0.30% -0.30% -0.60% 5.30% ***

17-2 - Engineers 1.70% *** 3.40% *** 5.00% *** 4.20% *** 3.40% ***

17-3 - Engineering and Mapping Technicians 4.50% *** 4.10% *** 10.80% *** 7.50% *** 7.50% ***

19-2 - Physical Scientists 3.60% *** 2.90% *** 6.40% *** 2.60% *** 7.20% ***

47 - Construction and Extraction 3.00% *** 5.10% *** 5.50% *** 2.00% *** 0.10%

49 - Installation, Maintenance, and Repair 0.20% 3.80% *** 11.50% *** 6.70% *** 11.20% ***

b) High carbon vs Generic ads

17-2 - Engineers -1.00% 2.10% *** 3.90% *** 3.10% *** 1.50% **

47 - Construction and Extraction 9.00% *** 6.40% *** 2.80% *** 8.90% *** 1.90% ***

c) Low carbon vs High carbon ads

17-2 - Engineers 2.70% ** 1.30% ** 1.10% * 1.10% 1.90% **

47 - Construction and Extraction -5.90% *** -1.30% ** 2.70% *** -7.00% *** -1.70% ***

ii. Intensive margin

SOC group Cognitive IT Management Social Technical

a) Low carbon vs Generic ads

13-1 - Business Operations Specialists 1.30% * -2.10% *** 6.10% *** 4.80% *** 6.00% ***

17-2 - Engineers 0.70% ** -2.90% *** 7.30% *** 5.00% *** 8.30% ***

17-3 - Engineering and Mapping Technicians 1.70% *** 4.60% *** 7.30% *** 6.90% *** 7.00% ***

19-2 - Physical Scientists -2.80% *** 7.30% *** 19.60% *** 6.90% *** 5.30% ***

47 - Construction and Extraction 0.10% 1.50% *** 1.60% *** 7.30% *** 2.10% ***

49 - Installation, Maintenance, and Repair 0.50% *** 1.60% *** 3.10% *** 6.90% *** 2.30% ***

b) High carbon vs Generic ads

17-2 - Engineers -1.60% *** -11.00% *** 0.20% -0.10% 2.80% **

47 - Construction and Extraction 0.80% *** 10.30% *** 1.70% *** 4.90% *** 0.40% **

c) Low carbon vs High carbon ads

17-2 - Engineers 2.30% *** 8.10% *** 7.10% *** 5.10% *** 5.50% ***

47 - Construction and Extraction -0.70% *** -8.80% *** -0.20% 2.40% *** 1.70% ***

Notes: Similar to Table F.2, we compute for each occupation and ad category (generic, low- or high-carbon), the unweighted

share of ads containing exactly one (extensive margin), or 2 or more skills (intensive margin) in each of the five broad skill

categories. We repeat this calculation in each commuting zone as defined in section 6. We then use the resulting distribution

to test the statistical significance of the skill gap magnitude between each ad category pair. Panel a) reports the difference

between low-carbon and generic ads in each occupation. A positive (resp. negative) value indicates that low-carbon ads

require the particular broad skill considered more (resp. less) frequently. E.g. the share of low-carbon Engineers ads

requiring exactly one technical skill is 4.2% higher than their generic counterparts, while the share requiring two or more

technical skills is 8.3% higher. Stars indicate the statistical significance of this difference, with three stars correspond to

the 1% threshold. Similarly, Panel b) compares the skill intensity of high-carbon and generic ads (a positive value indicates

that high-carbon ads require more of the skill considered), and Panel c) compares the skill intensity of low and high-carbon

ads (a positive value indicates that low-carbon ads require more of the skill considered).
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Table F.4: Within-firm differences in skill vector length (winsorized at 30 skills per ad)
between low carbon and generic ads

13-1 - Business 17-2 - Engineers 17-3 - Engineering and
Operations Specialists Mapping Technicians

Low carbon 1.243*** 2.452*** 2.774***
(0.137) (0.147) (0.222)

Firm FEs Yes Yes Yes
Year FEs Yes Yes Yes

R2 0.31 0.27 0.41
Observations 6,549,642 2,957,995 1,397,391

19-2 - Physical 47 - Construction 49 - Installation,
Scientists and Extraction Maintenance, and Repair

Low carbon 2.158*** 2.599*** 2.501***
(0.192) (0.232) (0.420)

Firm FEs Yes Yes Yes
Year FEs Yes Yes Yes

R2 0.42 0.53 0.47
Observations 284,835 1,235,908 5,017,358

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes:The dependent variable is the skill vector length, which is regressed on a binary variable indicating whether a job
ad is low carbon or not, and on firm fixed effects. Standard errors are clustered at the firm level. * p<0.1, **p< 0.05, ***
p<0.01
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Figure F.2: Average skill vector length in generic and low carbon ads (2010-2019)
Notes: Difference in the unconditional mean of the number of skills low carbon ads and generic ads in our six focus
occupations.
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Table F.5: Share of ads containing a specific broad skill, by occupation

Cognitive IT Management Social Technical

13-1 - Business Operations Specialists 36.5% 51.8% 50.4% 57.7% 19.2%

17-2 - Engineers 33.8% 48.2% 40.5% 48.5% 48.0%

17-3 - Engineering and Mapping Technicians 21.1% 33.5% 20.4% 34.2% 30.5%

19-2 - Physical Scientists 51.4% 28.4% 32.1% 47.6% 19.8%

47 - Construction and Extraction 8.5% 9.3% 12.4% 17.8% 17.0%

49 - Installation, Maintenance, and Repair 14.6% 17.1% 20.4% 31.6% 17.7%

All occupations 23.3% 30.7% 34.1% 42.6% 14.4%

F.1 Reskilling paths indicator
We introduce a new synthetic index that measures the divergent reskilling paths across

occupational groups.This index is derived from correlating two measures of skill impor-

tance that are constructed as Balassa indexes of revealed comparative advantage, varying

between -1 and 1. It can be widely applied to similar datasets and is particularly use-

ful for high-dimensional data like the skill vector in job vacancy data. It is in a similar

vein as Alabdulkareem et al. (2018) that use Balassa index to summarize O*NET data

constructing a measure of skill complementarity.

The first index termed “low-carbon skill coreness” (Ci
sk) assesses the importance of of

a skill s in a low-carbon (i = g) occupation k relative to generic ads within the same

occupation. Similarly, a high-carbon skill coreness indicator assesses the importance in

high-carbon ads (i = hc). The second index termed “skill coreness” (Gsk), asses the

importance of a skill s within a particular occupation relative to all other occupations.

Maintaining the notations of previous section, we define the two indexes as:

Ci
sk =

f i
sk/fsk−1

f i
sk/fsk+1

and Gsk = fsk/fs−1
fsk/fs+1

; where f i
sk are defined as above. A positive value of

Ci
sk indicates that coreness of skill s in low-(or high-) carbon jobs within SOC k is greater

than its coreness across all jobs within that SOC, indicating higher demand from low- (or

high-) carbon jobs within that SOC. Similarly, a positive value of Gsk indicates greater

demand for skill s within SOC j compared to its demand across all occupations.

The correlation coefficient between the two captures green reskilling paths: Reskillinggk =

corrs(C
g
sk, Gsk). This is obtained from a regression weighted by the share of each skill in

generic ads. If corrs(C
g
sk, Gsk) > 0, the skills required for low-carbon jobs in occupation j

belong to the core set of skills demanded by that occupation, indicating that a transition

to low-carbon jobs will require workers to further specialize in their main area of work.

Conversely, if corrs(C
g
sk, Gsk) < 0, the skills required for low-carbon jobs in occupation j

are outside of the core skill set required by that occupation. Therefore, workers seeking
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green jobs must diversify their skill sets and acquire new skills the usual occupational

profile.
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Figure F.3: Specialization vs diversification by occupation excluding highly specific skills
(exlucing Cg

sk > 0.9)
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Figure F.4: Specialization vs diversification by occupation, restricted to the five key
skills categories
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Appendix G Wage regressions robustness

Table G.1: Wage sample balance

Full sample

Ad count Skills count Education Experience Salary

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

13-1 - Business Operations Specialists

Generic 9,536,203 11.5 7.5 13.5 5.4 3.9 2.6 62,241 35,585

Low carbon 89,329 14.8 8.4 13.8 5.2 4.3 3.0 69,972 36,898

17-2 - Engineers

Generic 4,270,532 11.9 7.4 15.0 4.2 5.2 3.1 84,558 36,146

High carbon 111,600 10.6 6.6 15.5 3.0 6.0 3.5 108,570 58,064

Low carbon 213,376 16.2 8.4 15.2 3.9 5.3 3.2 85,182 32,731

17-3 - Engineering and Mapping Technicians

Generic 2,224,020 9.5 6.8 11.4 5.2 3.7 2.7 48,356 24,900

Low carbon 54,493 14.5 7.8 12.5 4.6 4.3 2.9 56,624 25,991

19-2 - Physical Scientists

Generic 405,443 10.9 6.8 16.0 4.1 4.3 3.2 71,482 42,134

Low carbon 21,048 15.7 8.5 15.9 4.1 4.3 3.2 68,883 29,015

47 - Construction and Extraction

Generic 2,141,068 6.3 5.6 6.8 6.2 3.7 2.5 46,385 25,543

High carbon 124,080 7.9 6.1 10.7 5.0 3.1 2.6 50,191 28,298

Low carbon 119,298 10.0 7.2 8.0 6.0 3.3 2.4 49,267 28,201

49 - Installation, Maintenance, and Repair

Generic 6,851,868 8.4 6.3 9.4 5.4 3.1 2.3 46,498 25,784

Low carbon 208,403 13.4 7.4 9.2 5.6 3.1 2.4 52,758 23,895
.

Has wage information

Ad count Skills count Education Experience Salary

Mean St. Dev. t-test Mean St. Dev. t-test Mean St. Dev. t-test Mean St. Dev.

13-1 - Business Operations Specialists

Generic 1,604,383 10.6 7.2 -0.88*** 11.9 6.5 -1.54*** 3.2 2.3 -0.652*** 62,241 35,585

Low carbon 17,767 13.8 8.5 -0.923*** 11.5 7.0 -2.27*** 3.3 2.6 -0.991*** 69,972 36,898

17-2 - Engineers

Generic 558,875 11.2 7.4 -0.645*** 14.5 4.7 -0.441*** 4.4 3.0 -0.747*** 84,558 36,146

High carbon 7,525 9.4 6.9 -1.18*** 14.9 4.2 -0.563*** 5.9 3.5 -0.0982** 108,570 58,064

Low carbon 28,701 16.5 9.4 0.226*** 14.8 4.4 -0.389*** 4.4 3.1 -0.882*** 85,182 32,731

17-3 - Engineering and Mapping Technicians

Generic 482,236 8.6 6.5 -0.862*** 10.0 5.9 -1.47*** 3.1 2.5 -0.637*** 48,356 24,900

Low carbon 9,600 13.8 8.7 -0.766*** 11.2 5.5 -1.3*** 3.6 2.5 -0.712*** 56,624 25,991

19-2 - Physical Scientists

Generic 73,047 10.7 6.9 -0.268*** 15.1 5.0 -0.896*** 3.1 2.6 -1.24*** 71,482 42,134

Low carbon 6,409 17.0 9.3 1.37*** 15.0 5.0 -0.911*** 3.1 2.5 -1.23*** 68,883 29,015

47 - Construction and Extraction

Generic 601,438 6.1 5.5 -0.244*** 5.4 6.2 -1.39*** 3.5 2.4 -0.194*** 46,385 25,543

High carbon 15,781 6.5 5.6 -1.33*** 8.4 6.1 -2.3*** 3.2 2.6 0.124*** 50,191 28,298

Low carbon 31,786 9.4 7.6 -0.592*** 6.5 6.2 -1.51*** 3.1 2.2 -0.193*** 49,267 28,201

49 - Installation, Maintenance, and Repair

Generic 1,329,697 8.0 6.2 -0.42*** 7.7 6.0 -1.62*** 3.0 2.2 -0.099*** 46,498 25,784

Low carbon 36,347 13.0 8.1 -0.387*** 8.2 6.0 -0.955*** 3.3 2.4 0.158*** 52,758 23,895
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Has wage, NAICS 2 and degree information

Ad count Skills count Education Experience Salary

Mean St. Dev. t-test Mean St. Dev. t-test Mean St. Dev. t-test Mean St. Dev.

13-1 - Business Operations Specialists

Generic 464,994 12.8 7.6 1.33*** 15.3 1.9 1.85*** 3.2 2.2 -0.678*** 61,644 30,900

Low carbon 5,200 16.9 8.9 2.11*** 15.7 2.3 1.91*** 3.3 2.4 -0.961*** 68,941 30,420

17-2 - Engineers

Generic 153,384 14.1 8.0 2.23*** 16.1 0.7 1.1*** 4.1 3.1 -1.04*** 87,233 31,952

High carbon 3,609 11.1 7.0 0.458*** 16.1 0.6 0.574*** 5.9 3.4 -0.102* 105,835 47,063

Low carbon 11,076 19.5 9.4 3.24*** 16.1 0.8 0.885*** 4.1 3.3 -1.22*** 87,906 30,841

17-3 - Engineering and Mapping Technicians

Generic 96,432 10.8 7.3 1.31*** 13.3 1.8 1.83*** 3.2 2.4 -0.536*** 51,132 24,703

Low carbon 2,918 16.7 10.2 2.19*** 13.8 1.9 1.28*** 3.7 2.5 -0.581*** 58,250 25,020

19-2 - Physical Scientists

Generic 31,508 12.4 6.8 1.43*** 16.7 1.6 0.752*** 3.0 2.6 -1.31*** 71,872 38,084

Low carbon 2,692 18.1 8.5 2.44*** 16.8 1.7 0.894*** 2.7 2.3 -1.61*** 71,802 26,513

47 - Construction and Extraction

Generic 76,338 9.1 6.6 2.73*** 12.3 1.0 5.44*** 3.6 2.3 -0.0535*** 48,873 23,562

High carbon 4,253 9.2 6.7 1.35*** 12.7 1.5 2.07*** 3.0 2.2 -0.0613* 51,808 24,039

Low carbon 5,197 14.4 7.9 4.4*** 12.3 1.1 4.31*** 3.6 2.4 0.288*** 56,717 33,432

49 - Installation, Maintenance, and Repair

Generic 300,614 9.5 6.8 1.09*** 12.3 1.0 2.93*** 3.0 2.2 -0.101*** 43,580 22,749

Low carbon 8,661 15.8 8.3 2.38*** 12.4 1.0 3.24*** 3.3 2.3 0.223*** 53,257 26,035
.

Has wage and firm information

Ad count Skills count Education Experience Salary

Mean St. Dev. t-test Mean St. Dev. t-test Mean St. Dev. t-test Mean St. Dev.

13-1 - Business Operations Specialists

Generic 887,188 11.7 7.4 0.232*** 11.5 6.8 -1.91*** 3.1 2.4 -0.737*** 62,694 33,956

Low carbon 12,692 14.4 8.6 -0.359*** 11.2 7.2 -2.63*** 3.1 2.5 -1.16*** 70,688 35,985

17-2 - Engineers

Generic 229,663 13.2 8.2 1.3*** 14.3 5.2 -0.726*** 4.1 3.1 -1.09*** 84,882 36,562

High carbon 3,218 11.3 7.8 0.709*** 14.3 5.2 -1.23*** 5.1 3.5 -0.899*** 99,932 57,942

Low carbon 15,491 18.6 9.4 2.34*** 14.6 4.6 -0.568*** 4.0 3.2 -1.32*** 84,358 32,110

17-3 - Engineering and Mapping Technicians

Generic 227,752 9.9 7.1 0.389*** 9.5 6.0 -1.94*** 2.9 2.5 -0.781*** 49,215 24,811

Low carbon 5,489 15.4 8.5 0.844*** 11.1 5.6 -1.4*** 3.5 2.5 -0.844*** 56,970 25,332

19-2 - Physical Scientists

Generic 40,457 11.6 7.2 0.653*** 15.1 5.3 -0.887*** 2.8 2.5 -1.56*** 76,640 44,204

Low carbon 4,494 17.3 8.9 1.6*** 15.0 5.2 -0.923*** 2.8 2.4 -1.54*** 71,204 28,655

47 - Construction and Extraction

Generic 290,818 7.2 5.9 0.811*** 5.5 6.1 -1.3*** 3.6 2.5 -0.108*** 48,980 24,980

High carbon 9,368 7.4 5.9 -0.448*** 7.9 6.2 -2.81*** 3.2 2.5 0.191*** 49,620 23,475

Low carbon 17,606 11.0 7.8 1.01*** 6.8 6.2 -1.23*** 3.2 2.2 -0.107*** 52,538 28,308

49 - Installation, Maintenance, and Repair

Generic 837,707 8.7 6.4 0.27*** 7.4 6.0 -1.91*** 2.9 2.2 -0.199*** 46,675 25,479

Low carbon 24,911 13.9 8.2 0.494*** 7.9 6.0 -1.24*** 3.2 2.3 0.0797*** 53,535 24,073

Notes: The subtables of Table G.1 provide descriptive statistics for each of the samples used in the specifications of Table
4. The t-tests reported are computed against the distribution of the respective variables in the full sample.
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Table G.2: Correlation between firm-level share of low-carbon ads and firm-level wage
fixed effects

2010-2012 2017-2019 All years

(10) (11) (12)

Firm-level wage FE 0.006*** 0.012*** 0.011***

(0.001) (0.001) (0.001)

Observations 41,015 277,146 341,803

R2 0.00042 0.0012 0.001

* p < 0.1, ** p < 0.05, *** p < 0.01
Notes: Firm FEs are recovered by regressing the log of the offered salary on firm FE, controlling for year, skill vector length,
commuting zone and SOC (3-digits) FEs.

Table G.3: Relationship between low-carbon job and wage offer (job ad length winsorized
at 30 skills)

2010-2012 2017-2019 2010-2019

(1) (2) (3) (4) (5) (6)

Job is low carbon 0.079*** 0.052*** 0.045*** 0.030*** 0.065*** 0.037***

(0.010) (0.010) (0.005) (0.004) (0.005) (0.004)

Observations 759,507 273,544 2,418,122 1,600,343 4,748,666 2,578,408

R2 0.27 0.74 0.23 0.69 0.24 0.66

Year FE Yes Yes Yes Yes Yes Yes

Skill vector length FE Yes Yes Yes Yes Yes Yes

Commuting Zone FE Yes Yes Yes Yes Yes Yes

SOC (3-digits) FE Yes Yes Yes Yes Yes Yes

Firm FE Yes Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The specifications of Table 4 are estimated on the initial and final periods of our sample, while winsorizing the skill
vector length to a maximum of 30 skills per ad. Standard errors are clustered at the Commuting Zone level.
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Table G.4: Relationship between low-carbon job and wage offer (consistent sample)

2010-2012 2017-2019 2010-2019

(1) (2) (3) (4) (5) (6)

Job is low carbon 0.064*** 0.052*** 0.054*** 0.030*** 0.071*** 0.037***
(0.013) (0.010) (0.006) (0.004) (0.006) (0.004)

Observations 273,544 273,544 1,600,343 1,600,343 2,578,408 2,578,408
R2 0.28 0.74 0.23 0.69 0.24 0.66

Year FE Yes Yes Yes Yes Yes Yes
Skill vector length FE Yes Yes Yes Yes Yes Yes
Commuting Zone FE Yes Yes Yes Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Table G.5: Relationship between low-carbon job and wage offer (no SOC-3 FEs)

2010-2012 2017-2019 2010-2019

(1) (2) (3) (4) (5) (6)

Job is low carbon 0.079*** 0.052*** 0.025*** 0.015*** 0.050*** 0.028***

(0.011) (0.011) (0.007) (0.005) (0.006) (0.005)

Observations 759,507 273,544 2,418,122 1,600,343 4,748,666 2,578,408

R2 0.13 0.71 0.1 0.66 0.12 0.63

Year FE Yes Yes Yes Yes Yes Yes

Skill vector length FE Yes Yes Yes Yes Yes Yes

Commuting Zone FE Yes Yes Yes Yes Yes Yes

Firm FE Yes Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The specifications of Table 4 are estimated on the initial and final periods of our sample, while excluding 3-digits
SOC occupational code from our FE structure. Standard errors are clustered at the Commuting Zone level.
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Table G.6: Relationship between low-carbon job and wage offer (with industry and
education FEs)

2010-2012 2017-2019 2010-2019

(1) (2) (3) (4) (5) (6)

Job is low carbon 0.053*** 0.036*** 0.036*** 0.037*** 0.071*** 0.035***

(0.013) (0.012) (0.008) (0.007) (0.008) (0.007)

Observations 182,897 105,689 593,068 490,882 1,154,316 876,865

R2 0.42 0.74 0.4 0.69 0.39 0.66

Year FE Yes Yes Yes Yes Yes Yes

Skill vector length FE Yes Yes Yes Yes Yes Yes

Commuting Zone FE Yes Yes Yes Yes Yes Yes

SOC (3-digits) FE Yes Yes Yes Yes Yes Yes

NAICS (2-digits) FE Yes Yes Yes Yes Yes Yes

Degree FE Yes Yes Yes Yes Yes Yes

Firm FE Yes Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The specifications of Table 4 are estimated on the initial and final periods of our sample, while including 2-digit
NAICS industry codes and educational requirements in our FE structure. Standard errors are clustered at the Commuting
Zone level.

Table G.7: Relationship between low-carbon job and wage offer (unweighted)

2010-2012 2017-2019 2010-2019

(1) (2) (3) (4) (5) (6)

Job is low carbon 0.058*** 0.040*** 0.031*** 0.022*** 0.043*** 0.029***

(0.009) (0.007) (0.004) (0.003) (0.004) (0.004)

Observations 759,507 273,544 2,418,122 1,600,343 4,748,666 2,578,408

R2 0.27 0.73 0.24 0.66 0.25 0.64

Year FE Yes Yes Yes Yes Yes Yes

Skill vector length FE Yes Yes Yes Yes Yes Yes

Commuting Zone FE Yes Yes Yes Yes Yes Yes

SOC (3-digits) FE Yes Yes Yes Yes Yes Yes

Firm FE Yes Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The specifications of Table 4 are estimated on the initial and final periods of our sample, without weighting for BLS
employment. Standard errors are clustered at the Commuting Zone level.
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Table G.8: Low-carbon job and wage offer relationship by occupation

2010-2012 2017-2019 2010-2019

(1) (2) (3) (4) (5) (6)

13-1 - Business Operations Specialists

Job is low carbon 0.112*** 0.073*** 0.101*** 0.032*** 0.09*** 0.032***

(0.021) (0.015) (0.017) (0.009) (0.013) (0.007)

Observations 232,507 90,355 868,497 576,455 1,602,229 888,176

Low carbon ads 2,869 1,399 9,061 7,392 17,456 12,468

R2 0.1 0.74 0.08 0.68 0.09 0.64

17-2 - Engineers

Job is low carbon 0.022* -0.003 -0.035*** 0 -0.007 0

(0.013) (0.011) (0.009) (0.008) (0.006) (0.006)

Observations 131,354 40,493 239,746 124,776 588,505 246,083

Low carbon ads 7,038 2,540 11,151 7,384 28,867 15,650

R2 0.13 0.75 0.1 0.62 0.1 0.6

17-3 - Engineering and Mapping Technicians

Job is low carbon 0.14*** 0.083*** 0.064*** 0.006 0.076*** 0.02*

(0.014) (0.024) (0.009) (0.013) (0.01) (0.01)

Observations 80,346 24,325 240,209 139,460 486,473 230,563

Low carbon ads 1,695 626 4,607 3,035 9,474 5,399

R2 0.15 0.79 0.12 0.7 0.12 0.66

19-2 - Physical Scientists

Job is low carbon 0.005 0.002 -0.047** -0.002 -0.03** 0.004

(0.028) (0.023) (0.019) (0.011) (0.014) (0.008)

Observations 16,794 7,966 31,480 19,675 77,550 44,168

Low carbon ads 980 625 2,717 1,926 6,274 4,380

R2 0.23 0.84 0.2 0.74 0.16 0.73

47 - Construction and Extraction

Job is low carbon 0.037* 0.012 -0.016 -0.019 0.006 0.013

(0.019) (0.022) (0.01) (0.012) (0.009) (0.01)

Observations 92,652 25,341 334,835 207,864 642,275 314,734

Low carbon ads 3,746 1,296 16,598 11,105 31,917 17,632

R2 0.17 0.76 0.16 0.74 0.18 0.7

49 - Installation, Maintenance, and Repair

Job is low carbon 0.085*** 0.059*** 0.056*** 0.052*** 0.091*** 0.056***

(0.015) (0.016) (0.006) (0.007) (0.007) (0.006)

Observations 205,854 85,064 703,355 532,113 1,351,634 854,684

Low carbon ads 5,356 2,408 18,114 14,220 36,026 24,702

R2 0.13 0.73 0.12 0.69 0.13 0.66

Year FE Yes Yes Yes Yes Yes Yes

Skill vector length FE Yes Yes Yes Yes Yes Yes

Commuting Zone FE Yes Yes Yes Yes Yes Yes

SOC (3-digits) FE Yes Yes Yes Yes Yes Yes

Firm FE Yes Yes Yes
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Notes: We estimate the specifications of Table 4 on each of our six main SOC groups of interest by splitting the sample.
Standard errors are clustered at the CZ level.

13−1 − Business Operations
Specialists

17−2 − Engineers

17−3 − Engineering and Mapping
Technicians

19−2 − Physical Scientists

47 − Construction and
Extraction

49 − Installation,
Maintenance, and Repair

0% 10%
Low carbon job ads wage gap

17−2 − Engineers

47 − Construction and
Extraction

0% 10% 20% 30%
High carbon job ads wage gap

Years
2010−2012
2017−2019

Figure G.1: Wage gap between generic jobs ads and low-/ high-carbon job ads by SOC
group and period

Notes: In the top panel, we estimate specification (1) of Table 4 on each of our six main SOC groups of interest over the
periods 2010-2012 and 2017-2019 by splitting the sample. In the bottom panel, we then complement these six estimates with
an application of specification (1) to the high-carbon wage gap estimation. Error bars indicate 95% confidence intervals.
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Table G.9: Relationship between high-carbon job and wage offer: Detailed results by
occupation

2010-2012 2017-2019 2010-2019

(1) (2) (3) (4) (5) (6)

17-2 - Engineers

Job is high carbon 0.263*** 0.087*** 0.061*** 0.014 0.179*** 0.049*

(0.038) (0.019) (0.022) (0.034) (0.017) (0.026)

Observations 131,354 40,493 239,746 124,776 588,505 246,083

High carbon ads 2,522 867 2,031 1,417 7,982 3,557

R2 0.13 0.75 0.1 0.62 0.1 0.6

47 - Construction and Extraction

Job is high carbon 0.171*** 0.082 0.169*** 0.056** 0.192*** 0.05*

(0.046) (0.078) (0.024) (0.025) (0.022) (0.027)

Observations 92,652 25,341 334,835 207,864 642,275 314,734

High carbon ads 2,701 1,038 8,421 6,232 16,057 9,494

R2 0.17 0.76 0.16 0.74 0.18 0.7

Year FE Yes Yes Yes Yes Yes Yes

Skill vector length FE Yes Yes Yes Yes Yes Yes

Commuting Zone FE Yes Yes Yes Yes Yes Yes

SOC (3-digits) FE Yes Yes Yes Yes Yes Yes

Firm FE Yes Yes Yes

Notes: We estimate the specifications of Table 4 on each of our two high-carbon occupations by splitting the sample.
Standard errors are clustered at the CZ level.
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Figure G.2: Firm-level share of low-carbon ads by decile of firm-level wage FEs
Notes: Firm-level FEs are recovered by regressing the log of the offered salary on firm FE, controlling for year, skill vector
length, commuting zone and SOC (3-digits) FEs. Firms are then grouped by decile of these recovered FEs, with the share
of low-carbon ads advertised by these firms computed.
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Table G.10: Returns to ad complexity

2010-2012 2017-2019 All years

(7) (8) (9)

Job is low carbon -0.027 -0.018 0.012

(0.052) (0.020) (0.016)

log(Skills count) 0.052*** 0.065*** 0.063***

(0.005) (0.002) (0.002)

Job is low carbon log(Skills count) 0.032* 0.019** 0.010*

(0.019) (0.007) (0.006)

Observations 273,544 1,600,343 2,578,408

R2 0.74 0.69 0.66

Year FE Yes Yes Yes

Commuting Zone FE Yes Yes Yes

SOC (3-digits) FE Yes Yes Yes

Firm FE Yes Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The estimation sample is restricted to ads where we observe the name of the advertising firm, within our six
occupations of interest. Controls include year, skill count bins, CZ, 3-digits occupation codes and firm FE – identical to
columns (3) and (6) in Table 4. Standard errors are clustered at the CZ level.

13−1 − Business
Operations Specialists

0%

5%

0 1 2 3 4
log(skills count)

17−2 − Engineers

−5%

0%

5%

0 1 2 3 4
log(skills count)

17−3 − Engineering &
Mapping Technicians

−10%

−5%

0%

5%

10%

0 1 2 3 4
log(skills count)

19−2 − Physical
Scientists

−10%

−5%

0%

5%

0 1 2 3 4
log(skills count)

47 − Construction &
Extraction

−5%

0%

5%

10%

0 1 2 3 4
log(skills count)

49 − Installation,
Maintenance & Repair

0%

5%

10%

0 1 2 3 4
log(skills count)

Figure G.3: Marginal effect of job ad complexity on low-carbon wage gap by SOC group
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Notes: The specification of Table G.10 is estimated for each of our six main occupations over 2010-2019. The plotted line
represents the marginal effect of the log of skill vector length on the low carbon wage premium. Shaded areas are 95%
confidence intervals, with standard errors clustered at the CZ level.

Table G.11: Returns to ad complexity & broad skills (log count)

2010-2012 2017-2019 All years

(7) (8) (9)

Job is low carbon 0.045*** 0.044*** 0.058***

(0.017) (0.006) (0.006)

log(Meta-cognitive) 0.027*** 0.036*** 0.035***

(0.005) (0.003) (0.003)

log(Meta-social) 0.056*** 0.072*** 0.076***

(0.007) (0.003) (0.003)

log(Technical) 0.052*** 0.049*** 0.052***

(0.006) (0.002) (0.002)

Job is low carbon log(Meta-cognitive) -0.036** -0.040*** -0.036***

(0.016) (0.007) (0.006)

Job is low carbon log(Meta-social) 0.047*** 0.018*** 0.011*

(0.013) (0.007) (0.006)

Job is low carbon log(Technical) -0.003 -0.013 -0.015**

(0.015) (0.009) (0.006)

Observations 273,544 1,600,343 2,578,408

R2 0.74 0.69 0.67

Year FE Yes Yes Yes

Skill vector length FE Yes Yes Yes

Commuting Zone FE Yes Yes Yes

SOC (3-digits) FE Yes Yes Yes

Firm FE Yes Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Our Mincerian wage regression is augmented by interacting the low carbon indicator with the log of the count of
skills belonging cognitive (cognative & IT), social (social & management) or technical groupings respectively in each ad.
Controls include year, skill count bins, CZ, 3-digits occupation codes and firm FE. Standard errors are clustered at the
Commuting Zone level.
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Table G.12: Returns to ad complexity & broad skills (dummy)

2010-2012 2017-2019 All years

(7) (8) (9)

Job is low carbon 0.030 0.037*** 0.050***

(0.018) (0.008) (0.008)

Technical 0.039*** 0.034*** 0.038***

(0.005) (0.002) (0.002)

Meta-cognitive 0.018*** 0.022*** 0.022***

(0.005) (0.002) (0.003)

Meta-social 0.038*** 0.045*** 0.051***

(0.006) (0.003) (0.003)

Job is low carbon Meta-cognitive -0.007 -0.027*** -0.025***

(0.014) (0.008) (0.006)

Job is low carbon Meta-social 0.046** 0.017* 0.008

(0.018) (0.009) (0.009)

Job is low carbon Technical 0.003 -0.012 -0.013**

(0.017) (0.010) (0.007)

Observations 273,544 1,600,343 2,578,408

R2 0.74 0.69 0.66

Year FE Yes Yes Yes

Skill vector length FE Yes Yes Yes

Commuting Zone FE Yes Yes Yes

SOC (3-digits) FE Yes Yes Yes

Firm FE Yes Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Our Mincerian wage regression is augmented by interacting the low carbon indicator with a dummy indicating
whether the ad contains any cognitive & IT (Meta-cognitive), social & management (Meta-social) or technical skill respec-
tively. Controls include year, skill count bins, CZ, 3-digits occupation codes and firm FE. Standard errors are clustered at
the Commuting Zone level.

Table G.13: Relationship between low-carbon job and wage offer by year

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Job is low carbon 0.070*** 0.086*** 0.089*** 0.126*** 0.066*** 0.064*** 0.097*** 0.046*** 0.043*** 0.047***

(0.018) (0.016) (0.016) (0.012) (0.011) (0.010) (0.015) (0.012) (0.008) (0.007)

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The Mincerian wage regression of Table 4 is augmented with interactions between the low carbon indicator and a
year dummy. Controls include year, skill count bins, CZ and 3-digits occupation codes. Standard errors are clustered at
the Commuting Zone level.

75



Appendix H Spatial correlation

High carbon ads

Top 15% commuting zones

Figure H.1: Spatial distribution of high-carbon vacancies in low-skilled occupations

Table H.1: Locational Gini

Low carbon ads High carbon employment High carbon ads Generic ads

Low skill 0.33 0.98 0.69 Construction & Extraction 0.23

Notes: Table H.1 presents the Locational Gini for share of low-carbon ads per CZ, share of high-carbon employ-
ment per CZ and share of high-carbon ads per CZ. The Gini locational coefficient is calculated following Gabe
and Abel (2012) using our own job ads dataset and data on employment by occupation and commuting zone from
the American Community Survey adapted from Popp et al. (2021). For any of variables presented in the four
columns listed above, indexed by k, it can be expressed as:

LocGinik = ∆/4u

where ∆ = {1/[n(n− 1)]}
∑n

i=1

∑n
j=1 |xi − xj |

i, j = U.S. commuting zones (i ̸= j)

n = Total number of CZ under ERS 2000 (709)

u = mean of the share variable k across all CZ

xi(j) = (1) [CZ i’s (j’s) share of low-carbon ads] / [CZ i’s (j’s) share of all ads]
(2) [CZ i’s (j’s) share of high-carbon emp.] / [CZ i’s (j’s) share of all emp.]
(3) [CZ i’s (j’s) share of high-carbon ads] / [CZ i’s (j’s) share of all ads]
(4) [CZ i’s (j’s) share of SOC 47 ads] / [CZ i’s (j’s) share of all ads]
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Table H.2: Correlation between the share of low-carbon ads and high-carbon employ-
ment

Low skill

Unweighted Weighted by ad count Weighted by population

log(1 + semp
hc,cz) 0.178*** 0.068*** 0.074***

(0.037) (0.019) (0.023)

Observations 681 681 679

R2 0.13 0.022 0.023

Notes: Table H.2 presents estimates of βemp
lc,hc in log(1 + slc,cz) = βemp

lc,hc log(1 + semp
hc,cz) + εcz . slc,cz is the average share

of low-carbon ads in low skilled occupations between 2010 and 2019 in each CZ. semp
hc,cz is the average share of high-carbon

employment in low skilled occupations between 2010 and 2017 in each CZ, according to the American Community Survey
(ACS). Column (1) presents unweighted results, while column (2) provides results weighted by the average number of job
ads between 2010 and 2019 in each CZ and column (3) weighted by the average population per CZ between 2010 and 2019.
***, **, * indicate statistical significance at the 0.01, 0.05, and 0.1 levels, respectively. Standard errors clustered by CZ are
provided in parentheses.

Table H.3: Correlation between the share of low-carbon ads and high-carbon ads

Low skill

Unweighted Weighted by ad count Weighted by population

log(1 + sadhc,cz) 0.241*** 0.168*** 0.189***

(0.062) (0.045) (0.050)

Observations 650 650 646

R2 0.097 0.028 0.033

Notes: Table H.3 is identical to Table H.2, substituting the share of high carbon employment (semp
hc,cz) for the share of high

carbon ads (sadshc,cz).

Table H.4: Correlation between the share of low-carbon ads and annual personal income

Low skill

Unweighted Weighted by ad count Weighted by population

log(inccz) 0.009*** 0.002** 0.002**

(0.001) (0.001) (0.001)

Observations 679 679 679

R2 0.075 0.026 0.025

Notes: Table H.4 presents estimates of βinc
lc in log(1 + slc,cz) = βinc

lc log(inccz) + εcz . slc,cz is the average share of low-
carbon ads in low skilled occupations between 2010 and 2019 in each CZ. inccz is the mean income per capita between 2010
and 2019 in each CZ. Column (1) presents unweighted results, while column (2) provides results weighted by the average
number of job ads between 2010 and 2019 in each CZ and column (3) weighted by the average population per CZ between
2010 and 2019. ***, **, * indicate statistical significance at the 0.01, 0.05, and 0.1 levels, respectively.Standard errors
clustered by CZ are provided in parentheses.
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Table H.5: Correlation between the share of high-carbon ads and annual personal income

Low skill

Unweighted Weighted by ad count Weighted by population

log(inccz) 0.007*** -0.001* -0.001***

(0.003) (0.000) (0.000)

Observations 648 648 648

R2 0.021 0.0055 0.014

Notes: Table H.5 presents estimates of βinc
hc in log(1 + shc,cz) = βinc

hc log(inccz) + εcz . shc,cz is the average share of
high-carbon ads in low skilled occupations between 2010 and 2019 in each CZ. inccz is the mean income per capita between
2010 and 2019 in each CZ. Column (1) presents unweighted results, while column (2) provides results weighted by the
average number of job ads between 2010 and 2019 in each CZ and column (3) weighted by the average population per CZ
between 2010 and 2019. ***, **, * indicate statistical significance at the 0.01, 0.05, and 0.1 levels, respectively. Standard
errors clustered by CZ are provided in parentheses.
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Figure H.2: Distribution of spatial correlation between pairs of 6-digits Construction
and Extraction occupations (47.0000)
Notes: Each panel presents the distribution of the pair-wise spatial correlation between the share of ads in any two
occupations at the SOC 6-digits level within SOC group 47, Construction and Extraction, at the CZ level. The vertical
dashed line represents the correlation between the shares of low-carbon ads and high carbon employment within SOC 47,
at the CZ level. From left to right, the ad shares are unweighted, weighted by ad count and weighted by population at the
CZ level resp. – the spatial correlation of interest lies at the 89th, 83rd and 84th percentile resp.
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Table H.6: Top low-carbon job identifiers in low-skilled occupations by state

State Most freq. low carbon 2nd most freq. 3rd most freq.

Alabama Insulation Emissions Testing Energy Conservation
Alaska Insulation Public Transit Systems Retrofitting
Arizona Insulation Energy Conservation Solar Energy
Arkansas Insulation Pollution Control Equipment Efficiency
California Insulation Solar Sales Solar Energy

Colorado Insulation Energy Conservation Renewable Energy
Connecticut Insulation Solar Sales Solar Energy
Delaware Insulation Solar Sales Solar Energy
Florida Insulation Energy Conservation Retrofitting
Georgia Insulation Energy Conservation Energy Efficiency

Hawaii Energy Conservation Insulation Efficient Transportation
Idaho Insulation Clean Energy Insulation Installation
Illinois Insulation Energy Efficiency Energy Conservation
Indiana Insulation Equipment Efficiency Energy Efficiency
Iowa Insulation Ethanol Wind Turbines

Kansas Insulation Wind Turbines Wind Power
Kentucky Insulation Energy Conservation Retrofitting
Louisiana Insulation Energy Conservation Energy Efficiency
Maine Insulation Renewable Energy Wind Turbines
Maryland Insulation Energy Conservation Energy Efficiency

Massachusetts Insulation Energy Conservation Energy Efficiency
Michigan Insulation Energy Conservation Energy Efficiency
Minnesota Insulation Energy Conservation Energy Efficiency
Mississippi Insulation Energy Efficiency Retrofitting
Missouri Insulation Energy Conservation Energy Efficiency

Montana Insulation Insulation Installation Geothermal
Nebraska Insulation Ethanol Wind Turbines
Nevada Energy Conservation Insulation Solar Sales
New Hampshire Insulation Insulation Installation Solar Sales
New Jersey Insulation Solar Sales Solar Energy

New Mexico Insulation Solar Energy Wind Turbines
New York Insulation Energy Efficiency Solar Sales
North Carolina Insulation Energy Efficiency Energy Conservation
North Dakota Insulation Wind Turbines Public Transit Systems
Ohio Insulation Retrofitting Energy Conservation

Oklahoma Insulation Wind Turbines Wind Power
Oregon Insulation Energy Efficiency Energy Conservation
Pennsylvania Insulation Energy Conservation Energy Efficiency
Rhode Island Insulation Energy Efficiency Solar Sales
South Carolina Insulation Energy Conservation Energy Efficiency

South Dakota Insulation Ethanol Wind Turbines
Tennessee Insulation Energy Conservation Retrofitting
Texas Insulation Energy Conservation Retrofitting
Utah Energy Conservation Insulation Energy Efficiency
Vermont Insulation Energy Efficiency Energy Conservation

Virginia Insulation Energy Conservation Energy Efficiency
Washington Insulation Retrofitting Energy Efficiency
West Virginia Insulation Energy Efficiency Insulation Installation
Wisconsin Insulation Energy Conservation Energy Efficiency
Wyoming Efficient Transportation Insulation Wind Turbines
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Appendix I Robustness on the identification of low-

carbon skills

Table I.1: Sensitivity of low-carbon skills set to selection hyper-parameters

Sensitivity yielding additional low-carbon skills (list of low-carbon skills added in a given sensitivity test)

a) Main specification See main list of low carbon skills in Table B.5

b) Frequency threshold 10 percentile

points less strict

Biocatalytic Processes, Bioness, Bioremediation, Biosafety, Bioswales, Brownfield Re-

development, Brownfields, Catalysis, Coolant Systems, Corrective Containment, Crop

Fertilization, Fertilizers, Government Incentives, Government Rebates, Heating - Cool-

ing Systems, Heating Systems, Pipe Insulation, Plumbing Pipe Insulation, Rainwater

Harvesting, Sediment Extraction, Sediment Removal, Sediment Sampling, Sedimenta-

tion Control, Sedimentation Rate, Water Conservation, Water Reuse, Water Supply

and Demand, Water Use Reduction

c) Keyword threshold 10% less strict Wastewater Lift Station Design, Wastewater Treatment Plant Design

d) Semantic threshold top 1.5% Advanced Technologies, Clean Technology, Clean Technology Investment Opportuni-

ties, Cleantech Products, Cleantech Solutions, Cost Efficiency, Domestic Transporta-

tion Services, Efficiency Analyses and Testing, Efficiency Estimation, Financial Effi-

ciency, International Transportation Services, Renewable Sales, Telematics, Tortois-

eSVN, Transportation Contracts, Transportation Finance, Transportation Sourcing,

Vantive, Vehicle Systems, Vvandt, Wind Energy Project Management, Wind En-

ergy Project Planning, Wind Project Construction, Wind Project Development, Wind

Project Engineering

e) Semantic clustering threshold 10%

less strict

Application Performance Management, Biofuels Production Adjustment, Biofuels Pro-

duction Management, Conservation Services, Ecological Services, Emissions Analyzer

Operation, Emissions Analyzers, Energy Saving Plumbing Systems, Equipment Design,

Equipment Development, Equipment Implementation, Facility and Site Construction

Layout, Facility Design, Facility Layout, Facility Planning Analysis, Flexible fuel ve-

hicles (FFV), Heavy Weather Operations, Low Voltage Lighting, Performance Im-

provement, Performance-related conditions, Railroad Law, Railroad Operating Rules,

Storage as a Service, Water Saving Plumbing Systems

f) Including ‘grey’ skill clusters Decentralized Wastewater Management, Natural Resources, Nuclear Energy, Nu-

clear Industry Knowledge, Nuclear Procurement, Nuclear Safety, Soil Conservation,

Soil Management, Soil Protection, Wastewater Collection, Wastewater Distribution,

Wastewater Engineering, Wastewater Process Engineering, Wastewater Processing,

Wastewater Purification, Wastewater Treatment
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Table I.2: Sensitivity of low-carbon skills set to selection hyper-parameters (cont.)

Sensitivity yielding fewer low-carbon skills (list of low-carbon skills removed in a given sensitivity test)

g) Frequency threshold
10 percentile points more
strict

Benefits Research, Biofuel Product Development, Biofuel Production,
Biofuels Applications, Biofuels Development, Biofuels Extraction, Bio-
fuels Plant Safety, Biofuels Processing, Biofuels Processing Equipment,
Biofuels Research, Biofuels Research and Development, Biofuels Technol-
ogy, Cost-Benefit Studies, Electric Vehicle, Ethanol, Ethanol Distillation,
Ethanol Recovery Methods, Industrial Ecology, Optical Data Storage, Soil
Tillers, Storage Management Technologies, Sustainable Materials, Tillage

h) Keyword threshold 10%
more strict

Abatement Projects, Air Pollution Control, Air Quality Control, Air
Quality Regulations, Air Quality Remediation, Air Quality Standards,
Alternative Energy Design, Alternative Energy Evaluation, Benefits Re-
search, Bicycle Planning, Bike Industry Knowledge, Biofuel Product De-
velopment, Biofuel Production, Biofuels Applications, Biofuels Develop-
ment, Biofuels Extraction, Biofuels Plant Safety, Biofuels Processing, Bio-
fuels Processing Equipment, Biofuels Research, Biofuels Research and De-
velopment, Biofuels Technology, Carbon Accounting, Carbon Asset Man-
agement, Carbon Management, Carbon Offsets, Carbon Reduction, Cost-
Benefit Studies, Electric Vehicle, Emission Reduction Projects, Emissions
Standards, Ethanol, Ethanol Distillation, Ethanol Recovery Methods,
Heavy Rail, Heavy Rail Transit Systems, High Speed Rail, Industrial
Ecology, Light Rail, Light Rail Transit Systems, Low Carbon Projects,
Low Carbon Solutions, Optical Data Storage, Pollution Control, Pollu-
tion Control Equipment, Pollution Control Systems, Pollution Preven-
tion, Pollution Regulation, Public Transit Operations, Public Transit
Systems, Public Transportation System, Rail Equipment Maintenance,
Rail Equipment Repair, Rail Industry Knowledge, Rail Operations, Rail
Safety, Rail-Track Laying, Railroad Conducting, Railroad Design, Rail-
road Engineering, Railroad Safety, Railway Signaling, Railway Systems,
Smoke Emissions Reduction, Soil Tillers, Storage Management Technolo-
gies, Sustainable Materials, Tillage, Transit Systems, Wind Commission-
ing, Wind Consultation, Wind Energy Industry Knowledge, Wind Energy
Operations, Wind Energy Operations Management, Wind Field Opera-
tions, Wind Generator Assembly, Wind Turbine Control System, Wind
Turbine Equipment, Wind Turbine Equipment Testing, Wind Turbine
Fabrication, Wind Turbine Performance Improvement, Wind Turbine Ser-
vice

i) Semantic threshold top
0.5%

Air Quality Regulations, Air Quality Standards, Cooling Efficiency, Emis-
sions Standards, Energy Cost Reduction, Energy Supply Side Savings,
Heating Efficiency, Insulation Efficiency, Streetcars, Trams, Wind Com-
missioning, Wind Consultation, Wind Field Operations

j) Semantic clustering
threshold 10% more strict

Bike Industry Knowledge, Electricity Regulation, Emissions Inspection,
Emissions Testing, Energy Law, Energy Loss Calculation, Ethanol Dis-
tillation, Ethanol Recovery Methods, Mitigation Projects, Performance
Yield, Photovltaic Mounting Solutions, Photovoltiac (PV) Module Eval-
uation, Pollution Control Equipment, Pollution Control Systems, Pub-
lic Transit Operations, Public Transit Systems, Public Transportation
System, Smoke Emissions Reduction, Spray Foam (Insulation), Storage
Management Technologies, Transit Systems
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Table I.3: Sensitivity of low-carbon vacancy shares to low-carbon skills selection

a) b) c) d) e) f) g) h) i) j)

All occupations 0.87% 1.12% 0.85% 0.94% 0.98% 1.13% 0.85% 0.77% 0.86% 0.81%
High-skilled occupations 0.30% 0.35% 0.29% 0.34% 0.36% 0.41% 0.29% 0.27% 0.30% 0.29%
Low-skilled occupations 0.57% 0.77% 0.55% 0.61% 0.61% 0.72% 0.55% 0.50% 0.56% 0.53%

Table I.4: Sensitivity of low-carbon skills premium to low-carbon skills selection

a) b) c) d) e) f) g) h) i) j)

13-1 - Business 1.561*** 1.489*** 1.591*** 1.85*** 1.797*** 1.536*** 1.59*** 1.883*** 1.567*** 1.644***
Operations Specialists (0.228) (0.211) (0.232) (0.205) (0.207) (0.201) (0.232) (0.242) (0.229) (0.237)

17-2 - Engineers 2.623*** 2.601*** 2.667*** 2.472*** 2.722*** 2.246*** 2.67*** 2.735*** 2.634*** 2.666***
(0.157) (0.141) (0.159) (0.141) (0.118) (0.13) (0.16) (0.173) (0.157) (0.159)

17-3 - Engineering and 2.953*** 2.771*** 2.991*** 2.905*** 3.101*** 2.636*** 2.988*** 3.102*** 2.969*** 3.045***
Mapping Technicians (0.227) (0.184) (0.231) (0.209) (0.187) (0.173) (0.231) (0.271) (0.231) (0.237)

19-2 - Physical 2.379*** 2.468*** 2.371*** 2.396*** 2.412*** 2.532*** 2.372*** 2.146*** 2.419*** 2.351***
Scientists (0.23) (0.222) (0.232) (0.225) (0.231) (0.167) (0.232) (0.23) (0.231) (0.235)

47 - Construction 2.693*** 2.612*** 2.696*** 2.705*** 2.731*** 2.719*** 2.696*** 2.701*** 2.694*** 2.696***
and Extraction (0.24) (0.204) (0.242) (0.239) (0.233) (0.214) (0.242) (0.251) (0.241) (0.236)

49 - Installation 2.618*** 2.674*** 2.669*** 2.499*** 2.553*** 2.617*** 2.669*** 2.752*** 2.661*** 2.744***
Maintenance, and Repair (0.424) (0.346) (0.432) (0.366) (0.404) (0.386) (0.432) (0.449) (0.429) (0.453)

Firm FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
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Table I.5: Sensitivity of low-carbon wage premium to low-carbon skills selection

2010-2019

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Job is low carbon 0.037*** 0.014*** 0.035*** 0.035*** 0.040*** 0.027*** 0.035*** 0.041*** 0.038*** 0.036***
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Observations 2,578,408 2,578,408 2,578,408 2,578,408 2,578,408 2,578,408 2,578,408 2,578,408 2,578,408 2,578,408
R2 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Skill vector length FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Commuting Zone FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01
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Figure I.1: Sensitivity of low-carbon vacancy shares to low-carbon skills selection

84



0.0%

2.5%

5.0%

7.5%

a)

0 1 2 3 4
log(skills count)

−4%

0%

4%

b)

0 1 2 3 4
log(skills count)

−3%

0%

3%

6%

9%
c)

0 1 2 3 4
log(skills count)

−2.5%

0.0%

2.5%

5.0%

7.5%

d)

0 1 2 3 4
log(skills count)

0%

2%

4%

6%

8%

e)

0 1 2 3 4
log(skills count)

−2.5%

0.0%

2.5%

5.0%

f)

0 1 2 3 4
log(skills count)

−3%

0%

3%

6%

9%
g)

0 1 2 3 4
log(skills count)

0%

2%

4%

6%

8%

h)

0 1 2 3 4
log(skills count)

0.0%

2.5%

5.0%

7.5%

i)

0 1 2 3 4
log(skills count)

0%

3%

6%

j)

0 1 2 3 4
log(skills count)

Figure I.2: Sensitivity of returns to complexity to low-carbon skills selection
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Appendix J Robustness: benchmarking the skill-based

measure against task-based classifications

J.1 Methodology
Task-based benchmark. Following Vona et al. (2018), let gk denote the greenness of

six–digit occupation k, defined as the share of O*NET specific tasks tagged “green” in

that occupation. Aggregating gk with BLS employment weights yields an economy-wide

employment share of green jobs, as employed in the present article and widely in the

literature (e.g. Elliott and Lindley, 2017; Vona et al., 2019).

Replication of Vona et al. (2018). We replicate the procedure described by Vona

et al. (2018) exactly to obtain 6-digits SOC code-level green task shares. In particular, we

take care in applying the corrections identified by Vona et al. (2018) in their Appendix

Table A1. We then apply combine these SOC code-level green shares with the same BLS

employment weights used throughout the rest of the paper to obtain a task-based green

job share of 3.2% (see J.1).

Low-carbon restricted task list. Many O*NET green tasks concern activities (waste,

remediation, water) that do not directly lower greenhouse-gas emissions, and therefore fall

outside the scope of our low-carbon skill identification algorithm. We thus hand-coded a

subset of tasks that unambiguously target mitigation technologies (renewables, efficiency,

electrification, carbon accounting). Applying the same steps to this “low-carbon task”

subset produces a more comparable task-based benchmark, and yields a low-carbon job

share of 1.5%.

Skill-based measure Section 2 of the paper sets out how 389 low-carbon skills are

identified with NLP techniques; a vacancy is low-carbon if it contains at least one of these

skills. As mentioned in the main body of the article, our approach yields a low-carbon

job share of 0.9%.

J.2 Correlation between the task-based and skill-based approaches
Figure J.1 plots, for the 12 two-digit SOC groups with non-zero O*NET green task shares,

the share of low-carbon ads against the task-based greenness index. Both panels reveal

positive and statistically significant correlations, of 0.63 and 0.59 respectively. The in-

tercept remains close to zero, indicating the absence of systematic bias in our skill-based

methodology.
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(b) Restricted low-carbon task list

Figure J.1: Skill- vs. task-based low-carbon employment shares, SOC two-digit level
(2010–19)

Table J.1: Employment share of green / low-carbon jobs, 2010–19 average

Scope Measure Definition Share

Green Task-based Full O*NET green task list 3.20%

Low-carbon Task-based Restricted low-carbon task list 1.50%

Low-carbon Skill-based Ad with ≥ 1 low-carbon skill 0.90%
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J.3 Aggregate comparison
Table J.1 shows that the broad task-based estimate yields a green employment share

of (3.2%), consistent with earlier studies. Restricting the task universe to mitigation

activities halves that estimate to 1.5%, bringing it much closer to the 0.9% delivered by

our skill-level approach. The convergence supports the view that our NLP classification

captures essentially the same set of jobs, while discarding non-mitigation activities.

This comparison thus validates the robustness of both our methodological contribution

and of our estimates of low-carbon employment shares.

See O*NET release 26.1; mappings to 2010 SOC codes are described in Appendix B of Vona et al. (2018).

SOC groups with zero green tasks in the O*NET classification are dropped; the shares are obtained within
each SOC group from SOC 6-digit shares weighted by BLS employment.
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