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Abstract

Standard classifications obscure which jobs directly drive emissions cuts. Using
U.S. online vacancies data, we develop a transparent, skill-based approach that
identifies low-carbon roles within occupations, leveraging NLP and text linked to
established green classifications. We show that, even within the same occupation
and firm, low-carbon jobs systematically demand more, and more diverse, skills than
non-low-carbon jobs. Within-occupation differences account for much of the overall
gap, implying occupation-level studies understate it. The transition thus requires
substantial retraining within existing occupations, even if not biased towards high-
skilled workers. Reskilling needs are highly occupation-specific. Returns to skill
complexity are higher in low-carbon roles, yet the green wage premium is positive
but modest and declining after controlling for occupation and firm heterogeneity.
Low-carbon jobs are more geographically dispersed than high-carbon ones but more
prevalent in wealthier areas, implying reallocation frictions and equity concerns.

Our evidence supports targeted reskilling policies to support a just transition.
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1 Introduction

In parallel with the ongoing technological advancements in digitization and artificial in-
telligence (Autor et al., 2003; Acemoglu and Autor, 2011), the energy transition is reshap-
ing labor markets by reallocating workers toward low-carbon activities while potentially
displacing skills used in high-carbon activities. The anticipation of significant job real-
locations under ambitious decarbonization scenarios (Hafstead and Williams III, 2018;
Castellanos and Heutel, 2024) and concerns over skill and spatial mismatches that may
jeopardize climate goals, compounded by persistent opposition from fossil fuel lobbies
citing job losses (Vona, 2019; Weber, 2020), have spurred policymakers and researchers
to better understand labor market adjustments to the low-carbon transition (IMF, 2022;
OECD, 2023; EBRD, 2023). A key aspect for political acceptability is the quality of low-
carbon jobs created in exchange of the high-carbon jobs destroyed, especially in terms of

wage premia and skill requirements (Meyer, 2022).

However, a major barrier to understanding the characteristics of low-carbon jobs is the lack
of reliable data (Dierdorff et al., 2009; Consoli et al., 2016; Vona et al., 2018). Low-carbon
jobs — defined as those that directly contribute to decarbonizing the economy — are not
adequately captured in standard occupational classifications, which are too infrequently
updated to reflect the emergence of new jobs driven by technological change. These
classifications also fail to distinguish between high- and low-carbon roles within the same
occupation. For example, the category Automotive Service Technicians and Mechanics
(SOC 49-3023) includes both electric vehicle and combustion engine car repairers, making

it difficult to assess the unique skill and wage profiles of low-carbon jobs.

This paper addresses these limitations by shifting from an occupation-level comparison to
a job-level perspective, offering the first broad assessment of skill and wage gaps as well
as spatial barriers associated with the low-carbon transition. To identify low-carbon jobs
within standard occupational groups, we build on a growing body of literature in labor
economics using online job vacancy (OJV) data and their skill content to measure worker
exposure to emerging technologies, such as automation and routine-biased technological
change (Deming and Kahn, 2018; Atalay et al., 2020), Artificial Intelligence (Acemoglu
et al., 2022; Alekseeva et al., 2021) and general macroeconomic shocks (Hershbein and
Kahn, 2018a; Chetty et al., 2024). Our primary contribution is to extend and adapt this
methodology to the low-carbon technological change context by leveraging a near universe

of U.S. online job vacancy data from Lightcast spanning 2010-2019.

We develop a novel, data-driven methodology, applying advanced natural language pro-
cessing (NLP) techniques to textual data from well-established green classifications, i.e.
the U.S. Occupational information Network (O*NET) green tasks, CPC green patent
classes and green products from PRODCOM, to identify the skills most semantically rel-



evant to decarbonization in the Lightcast dataset. This process isolates 389 low-carbon
skills* and identifies approximately 1.8 million job postings containing them, from a total
of 200 million postings. A key advantage of our approach is its ability to distinguish
between low-carbon and non-low-carbon roles within narrow occupational categories. For
example, we can isolate Renewable Grid Integration Engineers among Electrical Engi-
neers, and Wind Turbine Service Technicians among Installation, Maintenance, and Re-
pair Occupations, while excluding roles within low-carbon sectors or firms that do not
directly contribute to decarbonization such as Office and Administrative Support Occu-
pations. The resulting sample of low-carbon jobs goes beyond the energy sector, which
was the focus of previous studies (Curtis and Marinescu, 2023; Fabra et al., 2023), and
spans across a wide range of sectors, including construction and manufacturing, which are
likely to have larger effects on local job creation in the energy transition.” To prove the
robustness of our results to the key methodological choices, we cross-validate our method
through a comparison with task-based measures of green jobs (Vona et al., 2019; Elliott

et al., 2024) and extensive sensitivity checks.

Our skill-based methodology allows us to qualify and revisits several facts about green
jobs that are often taken for granted in the policy debate (OECD and CEDEFOP, 2014;
Kruse et al., 2017; Tomer and George, 2021; IMF, 2022; OECD, 2024). First, the share of
green jobs is smaller than previously thought. Green job shares have been estimated to be
in the range of 2-3% of total employment in studies using the task based approach with
occupation level data (Vona et al., 2019; Popp et al., 2021), or data on green production
(Becker and Shadbegian, 2009; Elliott and Lindley, 2017; Frattini et al., 2024), while
those that bypass the re-weighting of employment by green task intensity report shares
as high as 20% (OECD, 2024; Bowen et al., 2018; Valero et al., 2021). Our methodology
accurately isolates low-carbon jobs within occupations and estimates that the shares of
low-carbon employment have been around 1%, suggesting previous estimates exaggerated

the job creation effect of the green transition so far.

Second, we find that low-carbon job creation is more prevalent in low-skilled occupations
than high-skilled ones, thus questioning the common belief that the green transition, like
the parallel digital transition and globalization, will be biased against low-skilled work-
ers. Indeed, although job destruction of climate policies may be concentrated among
low-skilled workers (Marin and Vona, 2019; Yip, 2018), the very same workers may find
new employment opportunities in green activities. Importantly, this does not imply that

reskilling is not important for low-carbon technologies. Indeed, we find that low-carbon

*The list of identified low-carbon skills is made open source for transparency and as a resource for future
research.

fFor instance, Popp et al. (2021) show that the largest effects of the Obama green recovery package were
on construction workers. Knowledge-intensive engineering services and manufacturing are two other sectors that
provide key technologies for decarbonization but were under-investigated in previous studies on green activities,
with a few exceptions (Fankhauser et al., 2013; Frattini et al., 2024).



jobs have more complex and diverse skill needs than similar jobs within the same occupa-
tion. We also find that re-skilling needs are highly idiosyncratic and occupation-specific,
requiring a more nuanced approach to retraining compared to the more simple solutions
being advocated in policy circles (Strietska-Ilina et al., 2012; OECD and CEDEFOP,
2014; OECD, 2024).

Third, within-occupation skill gaps are larger than previously thought. We show that
the skill gap within narrow occupations significantly contributes to the overall differences
in skill requirements between low-carbon and non-low-carbon roles, suggesting previous
estimates that considered only the between-occupation variation were underestimated
(Vona et al., 2018; Zaussinger et al., 2025). We also show that green skill gaps are highly
idiosyncratic and occupation-specific, requiring either specializing into core occupational
skills or diversifying towards new ones. Moreover, while across the board technical and
managerial skills emerge as the most important skills for low-carbon occupations, social,

IT and cognitive skills are also in higher demand in some green roles.

Fourth, the wage premium for low-carbon jobs are smaller than previously thought (An-
toni et al., 2015; Bluedorn et al., 2023; Vona et al., 2019; Curtis and Marinescu, 2023;
Kuai et al., 2025; Whittard et al., 2025), despite the higher skill complexity demanded
in low-carbon vacancies. Once controlling for 2-digit occupational dummies (a proxy of
broad occupational characteristics) and firm fixed effects (a proxy of rent and productivity
differentials), the low-carbon wage premia are modest and decline over time. Particularly,
our results highlight that firm fixed effects account for a large fraction of what was previ-
ously thought to be a large green wage premium, consistent with the literature on the role
of firm wage differentials as a key and growing determinant of wage inequality (Abowd
et al., 1999; Card et al., 2013; Song et al., 2019). The modest low-carbon wage premium
contrasts with high premium for high-carbon jobs in the same occupational groups, in-
dicating a potential attractiveness gap that may deter talented workers from choosing a

career in low-carbon activities.

Fifth, concentrating on low-skilled workers, who face higher risk of long-term unemploy-
ment and social exclusion and thus the main target of so-called just transition policies, we
show that emerging low-carbon jobs tend to be more spatially dispersed than declining
high-carbon ones. Nonetheless, we find positive spatial correlation between high-carbon
and low-carbon jobs in line with previous work examining jobs in renewable energy (Cur-
tis and Marinescu, 2023). Although this suggests that U.S. fossil fuel communities may
attract some green job creation, since low-carbon vacancies are more concentrated in
wealthier areas, the green transition could also exacerbate existing regional inequalities
(Popp et al., 2021; Bluedorn et al., 2023).

Our contributions are three fold. First, we address the lack of a universal and operational



definition of low-carbon jobs, a major obstacle to rigorous research on the labor market
effects of the low-carbon transition. Definitions of what qualifies as “low-carbon” are
often contentious, and such debates can stall progress in both policy and public discourse.
Our approach seeks to move beyond this impasse by developing a transparent, replicable
and flexible data-driven method that avoids subjective choices in isolating jobs directly
contributing to decarbonization. We do so by applying NLP techniques to rich text data
from well-established green classifications and OJV data. In this way, we contribute
both to the emerging research using OJV data to study the green transition (Curtis and
Marinescu, 2022; Bone et al., 2025) and to the broader labor economics literature on the
impact of new technologies using OJV data (Deming and Noray, 2020; Acemoglu et al.,
2020), which has not previously applied these data to classify low-carbon jobs.

Second, we depart from previous research on green jobs (Vona et al., 2018; Bowen et al.,
2018; Vona et al., 2019; Bluedorn et al., 2023; Elliott et al., 2024) by exploiting within-
occupation and within-firm variation in the data, thereby demonstrating the value of
using granular, job-level analysis. This enables us to characterize reskilling needs more
precisely, and provide more reliable estimates of wage premia arising from low-carbon-
related technological change, particularly within the most exposed occupational groups.
Controlling for unobserved heterogeneity at both the occupation and firm level is essential
for constructing reliable counterfactuals, comparing low-carbon jobs to similar non-low-
carbon jobs (within-occupation) and isolating the firm-level component of the low-carbon
wage premium. This approach is especially valuable outside the U.S. context, where lack
of official data on the task content of occupations and coarse occupational classifications,

such as those in the UK and Europe, severely constrain occupational-level analysis.

Third, our coverage of low-carbon jobs across all occupations and sectors allows us to
examine the extent to which the low-carbon transition can be considered “just” in terms
of benefiting distressed regions and manual workers who have been left behind by other
structural transformations, such as globalization and automation (lammarino et al., 2019;
Autor et al., 2021; Hanson, 2023).} In doing so, our work directly addresses the concerns
of workers and communities in high-carbon industries, thereby helping to enhance the

political acceptability of ambitious climate action.

Taken together, our transparent methodology and detailed analysis substantially improves
the evidence on skills and wage gaps, providing a stronger foundation for designing com-
prehensive policy frameworks, e.g. green deal plans, that strategically target training pro-

grams, reskilling investments and wage insurance subsidies where they are most needed.

fPrevious empirical evaluations typically focus on specific polluting sectors where job destruction is likely
concentrated, for instance evaluating the U.S. Clean Air Act (e.g. Greenstone, 2002; Morgenstern et al., 2002;
Walker, 2011; Curtis, 2018; Walker, 2013), the effects of carbon pricing in Europe (e.g. Martin et al., 2014; Marin
et al., 2018; Dechezleprétre et al., 2023) or that of energy prices (Deschenes, 2011; Kahn and Mansur, 2013; Marin
and Vona, 2019)



This paper is structured as follows. Section 2 presents the data and our methodology
for identifying low-carbon jobs. Section 3 describes the evolution of U.S. low-carbon job
shares. Section 4 quantifies the skill gap between low- and high-carbon jobs and generic
jobs. Section 5 estimates low-carbon wage premiums. Section 6 explores spatial gaps for

displaced low-skilled workers, before concluding in Section 7.

2 A skill-based approach to identifying low-carbon jobs

Given the salience of decarbonization in current policy debates, this paper focuses on “low-
carbon” activities, a subset of “green” activities that specifically contribute to reducing
greenhouse gas (GHG) emissions across various sectors. Unlike standard definitions of
green jobs, which often encompass activities related to water, waste management, reme-
diation, and recycling, our analysis narrows the focus to activities that directly support
decarbonization. This approach not only captures efforts to reduce emissions from power
generation but also extends to sectors that received substantial funding under green re-

covery packages, such as construction, transport and manufacturing.

Isolating low-carbon skills presents several challenges. Technologies constantly evolve,
new low-carbon jobs continually emerge, and defining what qualifies as “low-carbon” can
be highly contentious. To navigate this, we introduce a methodological framework that
applies NLP techniques to text data from online job postings to identify low-carbon skills
and jobs. Our skill-based approach offers several advantages over other methods using
online job postings data to identify green skills and jobs (Curtis and Marinescu, 2022;
Bone et al., 2025), especially around objectivity, coverage and scope, granularity and

transparency.

First, a key methodological innovation is our data-driven approach to identifying what
is relevant to “low-carbon”, leveraging text data from well-established low-carbon classi-
fications to reduce subjectivity, rather than relying on researcher-defined keyword lists.’
While some design choices are needed (see next section), it nonetheless has fewer degrees
of freedom and avoids setting too narrow selection criteria or combining too many different

criteria.

Second, using only semantic similarity between Lightcast skills and well-established green
classification reduces the degree of freedom in the skill selection, thus making our approach
more replicable. At the same time, the approach is highly flexible: by adjusting the source
text, our approach can be adapted to identify green jobs in either a broad or narrowly

defined set of activities.

$For example, in Acemoglu et al. (2022), the authors select 33 skills relating to Artificial Intelligence in
footnote 13.

9In Curtis and Marinescu (2023), relevant green jobs are identified through keyword searches applied to job
titles, occupation categories, skills and firm names.



Third, our scope is wide and thorough than that of papers using OJV data for specific
sectors such as renewable energy (Curtis and Marinescu, 2023) or electric vehicles (Curtis
et al., 2023). Our focus on the whole economy allows to assess broader green skill gaps
and thus be of more useful to design retraining programs for the low-carbon transition
in critical sectors such as manufacturing and construction. Bone et al. (2025) also apply
a skill-based approach to OJV data, relying on Lightcast’s Open Skill Taxonomy that
identify 259 green skills. Our algorithm identifies a broader and arguably more relevant set

of low-carbon skills, suggesting the presence of false negatives in the Lightcast taxonomy.!

Fourth, while using firm-level definitions of green assumes that all roles within a clean
energy company are inherently “green” (e.g. Curtis and Marinescu, 2023), we instead
isolate only those job ads that specifically require low-carbon skills, enabling more accurate

measurement of green skill requirements and wage gaps.

While our approach has clear advantages, it is not without limitations. Relying on extant
green classifications means being constrained by their scope and boundaries and some
design choices are needed. We demonstrate the credibility of these choices through com-
prehensive sensitivity checks and cross-validation against the task-based measure of green
jobs, further supporting the robustness of our approach. This section documents in details

the data sources and techniques applied.

2.1 The Lightcast online job vacancy data

Following recent studies in labor economics (e.g. Hershbein and Kahn, 2018b; Deming and
Kahn, 2018; Acemoglu et al., 2022) we leverage data from Lightcast (formerly Burning
Glass Technologies), which collects raw text from online job ads via web scraping of
approximately 50,000 online job boards and company websites (Lancaster et al., 2021) for
the U.S.. Lightcast cleans and codifies the raw text into standardized variables including
skill requirements, occupational categories, wage offers, educational attainment, company
names, and locations. Importantly, job ads contain rich textual information on skill
requirements, which Lightcast canonicalizes into a taxonomy of over 16,000 unique skills.
The resulting dataset covers approximately 200 million ads from 2010 to 2019, representing

the near-universe of U.S. online jobs.

While increasingly used in research, it is important to recognize that OJV data over-
represent growing firms (Davis et al., 2012) and certain occupations, such as business &
financial, computer & mathematical, and education & law, while under-represent sectors,
such as construction, sales & service, agriculture and transport (Tsvetkova et al., 2024).
Furthermore, self-employment opportunities are not represented online. Finally, online

job vacancy data capture changes in labor demand (i.e. a flow) rather than employment

I Approximately 40% of skills in Lightcast’s database are not assigned to a skill cluster or family, partly
explaining this gap. Additionally, our approach improves on transparency, as the Lightcast green skill classification
is not fully documented.



(i.e. a stock). To mitigate these biases, we reweight low-carbon jobs using Bureau of

Labor Statistics (BLS) employment shares in our analysis (see Appendix Table A.1).

2.2 Low-carbon skills selection algorithm

Our goal is to identify which of the 16,000+ Lightcast skills should be classified as “low-
carbon”. Rather than relying on potentially subjective keyword lists, we develop a data-
driven approach that leverages three complementary signals to maximize the identification
of relevant skills while maintaining precision through a transparent and replicable algo-
rithm. This multi-signal approach ensures that we capture the full spectrum of low-carbon

skills across different contexts while avoiding false positives.

In particular, we do not simply rely on Lightcast’s own “Environment” skill category™, as
this would miss many relevant skills, such as those related to solar and wind power which
are found in the “Energy and Utilities” category instead. One way to circumvent this
problem would be to manually classify skills as low-carbon. However this would introduce
considerable subjectivity, which the contentious nature of determining what qualifies as

“low-carbon” makes particularly problematic.

To overcome these issues, we introduce a fully data-driven algorithm, leveraging three well-
established green classifications. First, green tasks from the Occupational Information
Network dataset (O*NET) is the main database used in the literature to identify green-
related work (e.g. Dierdorff et al., 2009; Vona et al., 2018). O*NET provides detailed
task descriptions for green occupations, such as ‘Order parts, tools, or equipment needed
to maintain, restore, or improve wind field operations” and “Prepare or review detailed
design drawings, specifications, or lists related to solar installations”. One limitation is
that O*NET does not distinguish between low-carbon and general “green” tasks. Second,
the climate change mitigation and adaptation patent categories (CPC Y02 patent class)
provides established definitions used in the literature (e.g. Egli et al., 2015; Glachant and
Dechezleprétre, 2016; Calel and Dechezleprétre, 2016).™ The advantage of this source is to
add “low-carbon specific” keywords. Third, to ensure adequate coverage of the transport
sector, we incorporate a list of trade product categories related to low-carbon transport
(e.g. railways) from the PRODCOM database (Bontadini and Vona, 2023).

By combining these three complementary sources, we aim to cover the majority of activi-

ties relevant to decarbonization across different sectors of the economy.* In the following,

**Lightcast skill categories, also called skill clusters in older versions of the Lightcast dataset, are groupings of
skills that have similar functionality, can be trained together, and/or frequently appear together in job postings.
For example, both the skills hydrology and meteorology belong to the skill subcategory “Earth and Space Science”,
which belongs to the broader Skill category “Science and Research”.

HFor example, Class YO2E covers “Reduction of Greenhouse Gas Emissions Related to Energy Generation,
Transmission or Distribution”.

HIf, alternatively, the objective is to isolate only the jobs that relate to the hydrogen economy, a hydrogen-
specific source text can be used e.g., the patent classification YO2E 60/3.



we outline the four steps of our algorithm. Full implementation details are provided in
Appendix B.1.

Step 1: Keyword extraction from textual sources

We begin by extracting keywords that distinguish low-carbon content from generic con-
tent within each source classification. We apply a state-of-the-art keyword extraction
algorithm, YAKE (Campos et al., 2020), to extract one- and two-word keywords charac-
teristic of each item in our three textual sources (i.e., each O*NET task, technology title
or product description). The algorithm yields a relevance score for each keyword. We
then select the keywords that appear in the green subsets of each source, and rank them
by the difference between the scores they obtain in the green vs. non-green subsets®.
We then plot the distribution of this difference across extracted keywords for each source
(see Figure B.1). All three distributions exhibit clear nonlinearities which allow us to
define thresholds specific to each source. Keywords that yield a difference in their green
vs non-green relevance scores above the source-specific threshold enter our final set of
low-carbon keywords. In our main threshold specification, this step yields 35 low-carbon
keywords (see Table B.1), including terms such as “solar”, “climate change”, and “wind

turbine”.
Step 2: Classify skills using three complementary signals

We then leverage textual analysis and the keywords obtained in the previous step to
identify which of the 16,0004 Lightcast skills are low-carbon. We implement a three-
pronged approach to maximize coverage, as different signals capture different kinds of
evidence that a skill is genuinely low-carbon. Sensitivity to alternative cut-offs is reported

for each signal in Appendix I.

Signal A: Contrastive frequency (not keyword-dependent). We compare how often each
Lightcast skill appears in the green versus the non-green subsets of our three textual
sources. A skill is flagged as low-carbon when it appears in the green subset but not in the
non-green subset of a given source and its frequency score falls in the top quintile for that
source. For the patent source, where core climate technologies frequently occur outside
the Y02 class, we relax the “absent from non-green” requirement. This frequency-based

signal identifies 46 low-carbon skills, such as “Smart Grid” and “Biofuels Processing”.

Signal B: Direct lexical match to low-carbon keywords. We then use our low-carbon key-
words with a simple, direct string-match rule: if a Lightcast skill name is an exact match
to any of the 35 low-carbon keywords from Step 1, it is flagged as low-carbon. This signal
is particularly useful for avoiding false negatives for highly specific technical terms. These

direct matches contribute an additional 214 low-carbon skills, such as “Solar Farm” and

$8Considering a non-green score of zero if the keyword only appears in the green subset.



“Wind Turbine Construction”.

Signal C: Semantic match to low-carbon keywords. While effective, simple keyword match-
ing can miss important connections due to vocabulary differences across sources. For
example, a keyword like wind turbine is semantically related to the Lightcast skill “Clean
Energy” even though they share no common words. To address this challenge, we employ
semantic matching using sentence transformers (Reimers and Gurevych, 2019), which
capture the underlying meaning of terms rather than just their textual similarity. This
technique allows us to overcome vocabulary differences between our source texts and the
Lightcast skills taxonomy.Y1 For each Lightcast skill, we compute the average of the
semantic proximity score between that skill and each low-carbon keyword. We classify
skills that achieve an average proximity scores in the top percentile as low-carbon. This
yields a further 35 low-carbon skills, such as “Clean Energy” and “Emission Reduction

Projects”.
Step 3: Coverage extension through semantic clustering

We recognize that most Lightcast skills are not semantically unique. For example, “Solar
Equipment”, “Solar Panels”, “Solar Energy Systems” and “Solar Photovoltaic Panels”
are distinct in the Lightcast taxonomy but semantically similar to each other. The three
signals of Step 2 identify “Solar Equipment” and “Solar Panels”, but not the other two
solar-related skills. To address such potential gaps, we apply agglomerative hierarchi-
cal clustering to regroup the 16,000+ Lightcast skills into 6,668 semantically consistent

*

clusters.”* If one skill in a cluster is identified as low-carbon, all skills in that cluster
are classified as low-carbon. This iteration adds 98 more low-carbon skills, including
“Solar Energy Systems” and “Solar Photovoltaic Panels” from the above example, along

9

such skills as “Climate Policy”, “Carbon Accounting” and “Weatherization Installation”

among others.
Step 4: Fxclusion for decarbonization focus and of false positives

To sharpen the focus on decarbonization and avoid false positives, we exclude job ads
that simultaneously contain both high- and low-carbon skills, and apply a targeted ex-
clusion list with three parts: i) green but non-climate skills (e.g. water treatment or
environmental remediation) are excluded because O*NET green tasks can conflate envi-
ronmental and low-carbon content; ii) generic energy-related skills that are not specific

to decarbonization (e.g. nuclear); iii) fossil-fuel related skills which can be semantically

TFor example, patents typically use specialist, technical vocabulary that differs from the more generalist
language found in job advertisements.

***We apply agglomerative hierarchical clustering on the high-dimensional semantic vector representation (i.e.,
sentence embeddings) of skills that we obtained to perform semantic matching. This allows us to automatically
identify skills that are conceptually related (e.g., “Python programming”, “R programming”, and “statistical
software” would form a cluster) without requiring manual classification. The resulting 6,668 clusters provide a
more tractable unit of analysis while reducing noise from near-duplicate skills.

10



close to decarbonization skills and therefore yield false positives. These are implemented
as a combination of a limited number of excluded Lightcast skill categories and excluded
keywords, as documented in Table B.2. These non-climate green and gray job ads are
reintroduced in sensitivity tests (Table B.4 lists skills that are reintroduced for this sen-
sitivity analysis). Finally, a set of brand-name false positives that include low-carbon
related terms (such as e.g. software systems “Solaris”, “Sunguard” or “Greenplum”)
listed in Table B.3 are excluded.

Through this four-step algorithm, we identify 389 low-carbon skills, which we call “low-
carbon job identifiers” (listed in Tables B.5-B.7). A job posting is considered low-carbon
if it contains at least one of these identifiers. Out of the 200 million job ads in the
Lightcast data, approximately 1.8 million are identified as low-carbon. Table B.8 lists the
most common low-carbon identifiers, which relate to energy efficiency, conservation, and

renewable energy. Examples of typical low-carbon job ads are provided in Table B.9.

We ensure that our results are robust to the use of alternative thresholds at each step of
the algorithm, and that our main findings remain unchanged when we relax our exclusion

list to include non-climate green skills and nuclear energy in Appendix B.2.

2.3 Identifying high-carbon ads

To explore the impact of the low carbon transition on workers, we also identify jobs at risk
of displacement. In contrast to low-carbon jobs, high-carbon jobs, being associated with
incumbent fossil-fuel technologies, are better captured by extant sector and occupational
classifications. Similar to Vona et al. (2018) and to subsequent works (Bluedorn et al.,
2023; Popp et al., 2021; Zhang et al., 2025), we use the concentration of an occupations
in polluting industries to identify brown jobs. Specifically, we follow (Popp et al., 2021)
and define high-carbon jobs as those that are in one of the two major occupational group
containing high-carbon roles (i.e. engineering and construction & extraction) and are
engaged in fossil-fuel related tasks (complete list in Appendix Table B.10).™ This defi-
nition focuses on jobs that will unavoidably disappear with decarbonization. Hence, we
exclude jobs in carbon-intensive manufacturing industries, which may become greener in
the future. This approach identifies around 200,000 vacancy postingst# (approximately
0.3% when weighted by BLS employment).

2.4 Cross-validation with the task-based approach
To assess the validity of our classification, we benchmark our skill-based identification of

low-carbon jobs against the widely used task-based classification of green jobs (e.g. Vona
et al., 2019; IMF, 2022; Elliott et al., 2024), in which the “greenness” of an occupation is
defined by the share of green tasks relative to total tasks, based on O*NET data.

1 The share of high-carbon job vacancies by occupation is shown in Table C.1.
1A small subset of these high-carbon ads (less than 10,000 ads) are also flagged as low-carbon. We exclude
these jointly high- and low-carbon ads from the rest of our analysis.

11



To enable comparison, we compute, for each occupation, the share of job ads classified
as low-carbon in the Lightcast dataset and benchmark it against the corresponding task-
based measure at the same occupational level. Because O*NET green tasks covers a
broader spectrum of green beyond those relevant to low-carbon, we construct a refined
subset of low-carbon-specific tasks from O*NET (see Appendix J.1 for details). As shown
in Appendix J.2, at the SOC 2-digit level, the correlation between our ad-based approach
and the task based approach is strong, whether with the original O*NET green tasks (first
panel), or the selection of low-carbon O*NET green tasks (second panel). We additionally
cross-validate our results on low-carbon employment shares through comparison with the

task-based approach in section 3.

2.5 Key occupations for the energy transition

To examine the differences between low-carbon and non low-carbon jobs within occupa-
tions, we focus on six occupations with a high density of low-carbon job ads. These are
chosen based on both low-carbon job shares and absolute numbers, as explained in Ap-
pendix C. They are four high-skilled 3-digit SOC occupations: Business Specialists (13-2);
Engineers (17-2); Engineering & Mapping Technicians (17-3); and Physical Scientists (19-
2), as well as two low-skilled 2-digit occupations: Construction & Extraction (47); and
Installation & Maintenance (49). The 2-digit level is chosen for low-skilled occupations
because workers’ mobility across-occupation is possible with some investments in training,
whereas high-skilled workers typically require substantial formal education to transition
between 3-digit occupations (e.g. biology to physics). These key occupations align closely
to those identified as most green-task intensive using O*NET data (Vona et al., 2019).

In the following sections, we focus on the 6 key occupations, and leverage this dataset to
explore the barriers to reallocation to low-carbon jobs, specifically by assessing the skill,

wage, and spatial gaps.

3 Employment share of low-carbon jobs

In the absence of a universal and operational definition of low-carbon jobs, it is unsur-
prising that estimates of green employment vary widely in the literature depending on
the level of analysis (e.g., sector or occupation), the methodology chosen and the gran-
ularity of the data (Vona, 2021; Apostel and Barslund, 2024). Within occupation-based
estimates, the upper end results from using the binary approach whereby all employment
in an occupation involving a green tasks is considered green (Bowen et al., 2018; Valero
et al., 2021; OECD, 2024), while the over-estimation can be corrected using the contin-
uous approach that re-weights employment shares by the share of green tasks over total

tasks as proposed by Vona et al. (2019), resulting in more moderate figures (Vona, 2021).

Our estimates suggest that even the most conservative estimates may have overstated the

scale of green job creation. As shown in Figure 1, the employment-weighted share of low-
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carbon jobs averaged just 0.9% of the U.S, workforce between 2010 and 2019, equivalent
to approximately 1.3 million workers.®¥¥ This lower figure partly reflects our focus on
low-carbon activities specifically, rather than the broader set of environmental activities
(e.g. water, waste, remediation, and gray energy jobs such as those linked to nuclear)

typically included in earlier studies - many of which are labour-intensive.

We argue that our methodology offers a more accurate measure of the true scale of low-
carbon employment, as it allows for job-level identification of relevant skills within occupa-
tions, rather than assuming all roles in a firm or sector are uniformly green. Interestingly,
despite relatively modest progress on decarbonization in the U.S. during the sample pe-
riod - total greenhouse gas emissions declined by only 6.2% (U.S. Energy Information
Administration, 2021), and the shale gas production expanded significantly - low-carbon
jobs still accounted for a larger share of employment than jobs in high-carbon extraction
sectors averaging 0.27% between 2010 and 2019 (see Figure E.1b).

1.0%
/\_/
0.8%
0.5% - St~ ——— T -t T T
PP OO TP PP U PRSI RURRURTIS
0.0%
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

= Total == Low skill = = High skill

Figure 1: Evolution of low-carbon vacancy shares in the U.S. (2010-2019)

Notes: Plotted shares of low-carbon ads are first calculated at the 6-digit SOC occupation level as the ratio between the
number of low-carbon ads and the total ads within a 6-digit occupation, then averaged for each reported SOC grouping
weighing by 6-digit employment obtained from the BLS. Includes all occupations. Source: Lightcast and BLS.

Over the past decade, the share of low-carbon vacancies in total job postings remained
relatively stable (Figure 1). This contrasts with the steady decline observed in high-carbon
jobs (Figure E.1b), and with the growth seen in renewable power-related jobs (Popp et al.,
2021; Curtis and Marinescu, 2023). More specifically, our data shows a modest increase
in the share of low-carbon job postings from 0.83% in 2010 to 0.97% in 2012, coinciding
with the job creation effects of the American Recovery and Reinvestment Act (ARRA)
(Aldy, 2013; Popp et al., 2021). This was followed by a period of decline and stabilization

$85 A5 indicated in the Figure notes, here we include all occupations and not only the 6 key occupations identified
in Section 2.5 in order to gain a general understanding of the share of low-carbon jobs in the U.S. economy.
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around 0.80%, before rising again from 2015 onwards. 111

A particularly noteworthy finding is that low-carbon jobs are more concentrated in low-
skilled occupations, and this share has increased over time. Our data reveals divergent
trends: the share of low-carbon jobs in high-skilled occupations declined from 0.39% in
2010 to 0.26% in 2019, while for low-skilled occupations, the share increased from 0.50%
to 0.61% over the same period (Figure 1) and Table E.1). The evolution of low-carbon job
shares is also highly heterogeneous across the six most relevant occupations as shown in
Appendix Figure E.la. Notably, the share of low-carbon vacancies declined for Business
Specialists (from 3.0% to 1.6%) and Engineers (from 5.5% to 3.9%) while it increased in

Counstruction and Installation.

This finding - that low-carbon vacancies are more concentrated and growing only in low-
skilled occupations- is an encouraging signal for the prospects of a just transition, while
earlier studies suggest that the green transition is likely to be skill-biased, favoring high-
skilled workers at the expense of those with lower qualifications (Marin and Vona, 2019).
It is also somewhat surprising given that, over the last five decades, technological change
has been associated with a shift in demand towards high-skilled workers and increased
income inequality (Katz and Murphy, 1992; Acemoglu, 2002; Acemoglu and Autor, 2011;
Autor et al., 2016). At the same time, this pattern echoes prior evidence on the job cre-
ation effects of ARRA’s green investments that primarily targeted manual and low-skilled
occupations (Popp et al., 2021). Thus, expansion of low-carbon employment opportunities
in low-skilled segments of the labor market may help to partially offset to the longer-term

trend of deteriorating labor market conditions for low-skilled workers.

To cross-validate our methodology, we reproduce low-carbon employment shares based on
the task-based approach and compare the results with our own estimates (see Appendix
J.3). While our measure suggests that low-carbon jobs accounts for 0.9% of total employ-
ment, the task-based approach yields a higher share of 3.2% when applying the broader
ONET green definition, consistent with prior studies (Vona et al., 2019). When using
only the low-carbon subset of O*NET tasks, the estimated share is lower at 1.5%, and
thus much closer to our own estimate. The fact that we obtain results within a compara-
ble range, particularly when focusing on low-carbon-specific tasks in O*NET, reinforces
confidence in the validity of our classification. Given the finer resolution of our job-level,
skill-based approach, we consider it likely to offer a more precise approximation of the

true share of low-carbon jobs in the economy.

Sensitivity checks (Appendix Table 1.3) confirm that reasonable changes in cut-offs do

not strongly affect the low-carbon shares. For instance, relaxing the frequency threshold

199 After adjusting for multiple hypothesis testing using the Bonferroni correction, all trends are statistically
significant.
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by 10% (column b) and expanding low-carbon skills to include gray skills (column h)
increases the overall number and share of low-carbon jobs by around 1.2% and 1.1%

respectively.

4  Skill gaps

The expectation that significant workforce reallocation is needed under ambitious de-
carbonization scenarios (Hafstead and Williams III, 2018; Castellanos and Heutel, 2024)
raises concerns over skill gaps, which have been identified as a primary obstacle to the re-
allocation of workers across occupations (Poletaev and Robinson, 2008; Kambourov and
Manovskii, 2009; Gathmann and Schénberg, 2010).This section shows that low-carbon
jobs systematically demand more skills, and more diverse set of skills compared to their
non-low-carbon counterparts, even within the same occupation or firm. In other words,
even if the low-carbon transition is not biased in favor of high-skilled workers, it re-
quires substantial retraining within existing occupations. We also show that reskilling
requirements are highly occupation-specific, pointing to the need for targeted retraining

strategies.

4.1 Within and between occupational green skill gaps

To assess the differences in skill requirements of low-carbon and similar non low-carbon
jobs, we build a measure of the green skill gap based on the frequency of specific skills
being observed in low-carbon job postings relative to generic ads. This intuitive frequency-
based based has been previously used to deal with data that do not provide information on
skill importance, such as OJV data (Deming and Kahn, 2018; Deming and Noray, 2020)
or German task data (Spitz-Oener, 2006; Gathmann and Schonberg, 2010). Importantly,
the specific green skill used to identify the job as low-carbon is always excluded from the

comparison.

Denoting the share of job ads that mention skill s within 6-digit occupation k and job

type i - either low-carbon (i = g) or generic ads i = ng - as fi, = Z’“ we define the

)
k

aggregate low-carbon skill gap for skill group s as:

FE= 119 =) whwr x (f4 = 179), (1)
k

where f7'9 is the simple average share of job ads mentioning skill s across all occupations,
w} is the share of low-carbon jobs in total jobs for occupation k and wy, is the employment
share of occupation k, accounting for the size of the occupation. This measure reflects
both within-occupation and between-occupation differences in skill demand and to further

disentangle these effects, we decompose the skill gap as follows:

For comparability, both measures are renormalized such that ), wj X wx = 1. This ensures that f¢ — f39

can be interpreted as the average skill gaps across occupations at 6-digits.
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FE— 00 = wiwe < [(f5 — f30) + (f5f = 119 (2)
k

The second element in the square bracket is the between-occupation component of the
skill gap - that is, the extent to which the share of low-carbon jobs (w}) correlates with
the difference in skill use across occupational groups. This component is the focus of
prior research using occupation-level data. The first element instead captures the within-
occupation skill gap - that is, the difference in skill intensity between low-carbon and
generic jobs within the same occupational group. This dimension is unobservable in
occupation-level datasets and can be estimated for the first time in our study thanks to
the high granularity of the OJV data. This decomposition allows us to quantify the extent

to which earlier research may have underestimated the true scale of skill gaps.

To make the Lightcast data’s skill multidimensionality more tractable, we then follow
the approach of Deming and Kahn (2018) and group skills into five broad categories —
cognitive, social, IT, managerial, and technical. This grouping aligns with prior research
highlighting the importance of cognitive, social, and managerial skills in tasks less prone
to automation (Autor et al., 2003; Deming, 2017), and the specific relevance of technical

skills to green technologies in the workplace (Vona et al., 2018).

Table 1 reports the results of the decomposition for each five broad skill category, using
four different weighting schemes resulting from the combination of different choice of wy
and wy in each column. Four key results emerge. First, skill gaps are consistently positive
across all categories, indicating that low-carbon jobs require more skills than comparable
roles. Second, the within-occupation component significantly contributes to the overall
gap, suggesting that previous occupation-level analyses underestimated the true extent of
the reskilling challenge. Third, the within-component is especially larger for managerial,
social, and technical skills where it accounts for up to one-third of the overall gap. This
confirms the technical and managerial skill bias of green activities previously found (Vona
et al., 2018; Marin and Vona, 2019). Finally, a novel finding here is that green jobs also

require social skills more than generic jobs.

The average green skill gap may mask differences in the scale of these gaps across occupa-

tions, and we explore this heterogeneity, by comparing the prevalence of skills in the five

For example, (Vona et al., 2018) estimate the skill gap using the covariance between the occupational green

task intensity (wj) and the across-occupation skill gaps (fsk — fs). In O*NET-based studies, fsx is observed, but
9 is not. Because the share of green jobs in each occupation is small, fI'? is highly correlated with fs.

More specifically, skills are classified into five groups using a set of keywords provided by (Deming and Kahn,
2018) except for IT skills that uses the Lightcast I'T skill family (see Table F.1 for a complete list) and technical
skills that use (Vona et al., 2018) (see Appendix Table F.1).

The former is either the green task intensity from O*NET or the share of low-carbon task from Lightcast
data. The latter is either the 6-digit occupational employment share from BLS or the number of Lightcast job
ads.
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broad skill categories across low-carbon (f%,), high-carbon (f% ) and generic job postings
(f27). Figure F.1 in the Appendix shows that, consistently across occupations and broad-
skill types, a higher share of low-carbon jobs demand these skills, both at the extensive
margin (one skill mentioned) and the intensive margin (two or more skills mentioned).
However, the size and significance of the gaps indeed, differ by occupation (see also the
corresponding Table F.2 in Appendix for details). Larger skills gaps are observed for En-
gineering technicians and Installation & maintenance workers, especially for managerial,
technical and social skills, indicating potential challenges in filling low-carbon vacancies
in these occupations. Technical skills drive much of the gap for Business Specialists, while
management ad [T skills drive the gaps in Construction. When examining the shift from
high- to low-carbon jobs, we find that high-carbon ads also require more skills compared
to generic jobs. This suggests a narrower skill gap between low- and high-carbon ads, as
previously noted (Vona et al., 2018; Popp et al., 2021; Lim et al., 2023). However, it is
noteworthy that for engineers, low-carbon vacancies demand more skills than high-carbon
ones (Appendix Table F.2).

Table 1: Skill gaps between low carbon and non-low carbon jobs, within and between
occupations

O*NET Low-carbon O*NET Low-carbon

greenness X share x greenness x share x
Employment Employment  Job ads Job ads
share share share share

Cognitive 21.03% 17.87% 25.88% 22.92%
Within-occupation 2.59% 2.81% 2.87% 2.79%
Cross-occupation 18.45% 15.06% 23.02% 20.13%
IT 26.70% 22.19% 33.53% 29.61%
Within-occupation 2.47% 2.58% 2.82% 3.13%
Cross-occupation 24.23% 19.61% 30.71% 26.48%
Management 35.34% 29.35% 39.22% 36.39%
Within-occupation 8.29% 8.20% 10.51% 10.45%
Cross-occupation 27.05% 21.15% 28.72% 25.94%
Social 38.96% 33.84% 44.58% 41.78%
Within-occupation 7.44% 7.41% 9.44% 9.23%
Cross-occupation 31.53% 26.44% 35.14% 32.55%
Technical 32.73% 26.78% 36.86% 34.13%
Within-occupation 8.68% 9.29% 9.18% 10.52%
Cross-occupation 24.05% 17.49% 27.68% 23.61%

We exploit the spatial variation across Commuting Zones (CZ) in the share of low-carbon ads in specific
occupations to compute confidence intervals (see Table F.3 for details). Commuting Zones, as defined by the U.S.
Department of Agriculture (USDA) Economic Research Service (ERS) are geographic units intended to more
closely reflect the local economy where people live and work.
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Notes: Here we stack together the 6 key occupations identified in Section 2.5, weighting them by BLS employment. This
table shows the within- and between-occupation skill gaps for five major skill categories as defined by Equation 2. Skills
are categorized using a set of key words as detailed in main text. These are calculated using 4 different combinations of
weights wg and wg (in columns). Skill gaps are reported in percentage points, multiplying the difference in the shares by
100 for readability. Source: Lightcast and BLS.

4.2 Skill complexity

Our results so far suggest that low-carbon jobs require a broader and more diverse range
of skills than comparable non-low-carbon roles. This pattern is consistent with the idea
that low-carbon jobs involve more complex tasks, as previous research has shown that job
complexity is strongly linked to the number and diversity of the skills required (Deming,
2017; Alabdulkareem et al., 2018; Deming, 2023; Stephany and Teutloff, 2024). This
pattern is evident in OJV data where ads of high-skilled jobs require more skills than ads
of low-skilled jobs.

Table 2: Skill vector length of generic, low- and high-carbon jobs by occupation

Generic Low carbon High carbon

13-1 - Business Operations Specialists 11.5 14.8
17-2 - Engineers 11.9 16.2 10.6
17-3 - Engineering and Mapping Technicians 9.5 14.5
19-2 - Physical Scientists 10.9 15.7
47 - Construction and Extraction 6.3 10.0 7.9
49 - Installation, Maintenance, and Repair 8.4 13.4
All occupations 9.3 14.1 9.2

Notes: This table shows the average skill vector length of generic, low-carbon and high-carbon job ads in our sample, by
3-digit (for high skilled) and 2-digit (for low-skilled) SOC groups, for the years 2010 to 2019. Source: Lightcast.

Concerning low-carbon ads, Table 2 shows that they require more skills per ads, and thus
are more complex than generic ads, within the same occupation and after excluding the
specific green skills used to identify the job as low-carbon. Two possible explanations
can account for this pattern. First, firms may write more detailed postings to attract
applicants regardless of job complexity. However, this result holds even after including
firm fixed effects to control for unobservable heterogeneity, for example in job advertising
strategies (Table 3 and Appendix Table 2). Second, green jobs may represent new job
types, requiring employers to specify more skills to ensure a suitable match. However,

the difference in skill vector length between low-carbon and generic jobs remains stable

On average in 2019, more skills are contained in high-skilled job ads (e.g. 17 - Architects & Engineers and
19 - Scientists) with a median of 10 skills per ad, than in low-skilled job ads (e.g. 47 - Construction & Extraction
and 49 - Installation, Maintenance & Repair) with a median of 7 skills per ad.

This result is robust to winsorizing the skill length at 30 skills per ad (see Appendix Table F.4). Appendix
Table 1.4 also shows that our finding that low-carbon jobs have higher skill requirements is robust to the design
choices made in the low-carbon skill selection algorithm, specifically the cut-offs used, and the inclusion of gray
skill clusters in low-carbon skills.
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through our sample period, rather than decreasing over time (see Appendix Figure F.2),

indicating that the novelty of low-carbon roles is not the driver here.

Table 3: Within-firm differences in skill vector length between low carbon and generic

ads

13-1 - Business

Operations Specialists

17-2 - Engineers

17-3 - Engineering and
Mapping Technicians

Low carbon 1.561%** 2.623*** 2.953%**
(0.228) (0.157) (0.227)
Mean length 12.45 13.02 10.65
Firm FEs Yes Yes Yes
Year FEs Yes Yes Yes
R? 0.3 0.27 0.4
Observations 6,549,642 2,957,995 1,397,391

19-2 - Physical

47 - Construction

49 - Installation,

Scientists and Extraction = Maintenance, and Repair
Low carbon 2.379%** 2.693*** 2.618%**
(0.230) (0.240) (0.424)
Mean length 11.95 7.7 9.26
Firm FEs Yes Yes Yes
Year FEs Yes Yes Yes
R? 0.41 0.52 0.47
Observations 284,835 1,235,908 5,017,358

*p < 0.1, ** p < 0.05, ¥* p < 0.01

Notes: The dependent variable is the skill vector length, which is regressed on a binary variable indicating whether a job
ad is low carbon or not, and on firm fixed effects. Source: Lightcast. Standard errors are clustered at the firm level. *
p<0.1, **p< 0.05, *** p<0.01

Taken together, we find strong evidence that low-carbon jobs are systematically more
skill-intensive requiring more complex skill profiles than comparable roles. This result
motivates our subsequent analysis of whether these higher skill demands are also reflected

in wage outcomes, as explored in Section 5.

4.3 Reskilling paths by occupation

Our findings that low-carbon jobs require a richer skill portfolio than similar non-low car-
bon jobs suggests that substantial re-skilling efforts will be required to enable the expected
large scale mobilization of a greener workforce in the coming decades. To understand
whether low-carbon jobs require workers to deepen existing competencies or to diversify
beyond their occupational core, we introduce a new reskilling indicator measuring the di-
rection of skill reorientation required by new and emerging jobs, such as low-carbon ones.

This indicator is based on the correlation between two Balassa indices of skill prevalence,

New emerging jobs are often a main channel through which new skills enter the labor market (Lin, 2011;
Autor et al., 2022) hence represent evolving roles in the labor market.
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which has been used in previous research on skill differences across occupations (Alab-
dulkareem et al., 2018). The first index assesses the importance of a skill in low-carbon
jobs with respect to non-low-carbon job within an occupation, while the second assesses
the importance of the same skill across occupations as in Alabdulkareem et al. (2018),
thus identifying core occupational skills (see Appendix F.1 for details). A positive corre-
lation suggests that reskilling builds on existing skill set (specialization), while a negative

correlation implies the need to acquire skills beyond the core (diversification).

Results reveal marked heterogeneity in reskilling path across occupations (Figure 2).
STEM occupations, such as Engineers (0.07) and Scientists (0.13), exhibit positive and
statistically significant correlations, suggesting that green transitions within these occu-
pations involve deepening existing expertise as also shown by previous research (Vona
et al., 2018; Popp et al., 2024). This is expected given that climate science and environ-
mental engineering require the combination of multiple scientific domains. High-carbon
engineering roles also show a path of specialization, again suggesting the relative ease of
moving from high- to low-carbon engineering roles. Conversely, Business Specialists ex-
hibit a pronounced negative correlation (-0.15), suggesting a diversification path beyond
their core skill sets, perhaps in acquiring more technical or engineering-related skills. En-
gineering Technicians show a modest diversification pattern, although the correlation is

sensitive to the specific skill subsets used.
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Figure 2: Specialization vs diversification by occupation

However, the positive correlation disappears for Scientists when highly specific skills (C?, > 0.9) are excluded
(see Appendix Figure F.3) or when we consider a subset of skill items belonging to the five key categories (see
Appendix Figure F.4).

This result is robust to the different choices of the skills included as highlighted in Appendix Figures F.3
and F.4.
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Notes: For each occupation, we plot the 400 most frequent skills mentioned in job postings , with each dot representing one
skill. For Engineers (17-2) and Construction & Extraction, we separately plot this for low-carbon job ads (green colour)
and high-carbon job ads (brown colour). A positive correlation (p ) between C%, (y awis) and G, (z awis) indicates
specialization while a negative correlation indicates diversification.

For lower-skilled occupations, we do not observe clear specialization or diversification
patterns, despite the presence of notable skill gaps (Figure F.1). This suggests that re-
skilling for these roles may be highly context- and technology-specific, requiring context-

specific solutions.

Overall, accounting for the within occupation variation reveals larger and more complex
skills gaps than previously documented, with reskilling paths varying considerably by
occupation. Whether these gaps are reflected in wage differentials is the focus of the next

section.

5 Wage gaps

This section explores the attractiveness of low-carbon jobs by examining the wage offers
posted in job advertisements. Prior studies generally find a positive wage premium for
green jobs (Antoni et al., 2015; Muro et al., 2019a; Bluedorn et al., 2023; Curtis and
Marinescu, 2023; Kuai et al., 2025; Whittard et al., 2025). We extend this literature
by estimating wage premia for low-carbon jobs within narrowly defined occupations and
firms, and find that these are positive but modest, and have declined over time. Consistent
with evidence on skill gaps, we find that green wage premiums are higher for jobs that

require a more complex skill set.

5.1 Empirical setting

Online job vacancy data allow us to observe the wage offers posted in job ads. These
wage offers reflect hiring difficulties and demand-side labor market dynamism in particular
sectors, but may differ from the equilibrium wages, which also accounts for supply-side
factors such as the availability of candidates with the required competences. Previous
research circumvents this potential problem by combining BLS wage data with skill data
aggregated from job ads at the occupational level (Deming and Kahn, 2018; Atalay et al.,
2020; Azar et al., 2020). However, such approach would only allow estimating an average
low-carbon wage premium across-occupations (e.g. Vona et al., 2019; Bluedorn et al.,
2023). Reassuringly, Lightcast wage offers are highly correlated with BLS wage data
(Azar et al., 2020). This motivates our use of online job ads to compare wage offers
between low-carbon jobs and comparable generic jobs within the same occupation. Our
data also allows controlling for firm heterogeneity and other structural factors which is
important given that green jobs still constitute a small share of employment within most

occupations.

For example, 4% in the U.S. 2006-2014 (Vona et al., 2019), 7% in 2005-19 across 31 countries (Bluedorn
et al., 2023), and between 4% to 10% in the UK in 2011-2018 (Whittard et al., 2025).

Moreover, this study provides similar results on the estimated association of labor market concentration and
wages in local U.S. labor markets.
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We use Mincerian wage regressions (Mincer, 1974) to estimate returns to low-carbon jobs,
controlling for occupational fixed effects and other covariates for six occupations with a

higher prevalence of low-carbon ads:

log (wiet) = Bic1{i € le} + Xt + Yo + i + €t (3)

where 7 indexes the job ad, o occupation, and ¢ time. The variable of interest is 1{i € lc}
and associated coefficient ;. captures the average return to low-carbon jobs compared to
generic jobs in the same occupation, as we include occupational fixed effects v, (3-digit
SOC), to capture exposure to other structural factors, such trade or automation. Equation
3 is estimated separately for three sub-periods (2010-12 and 2017-19), including year
fixed effects a; to control for common shocks within each sub-period. Importantly, wage
information is available only for around 21% of job ads. Estimations are weighted by the
BLS employment at 6-digit SOC level to address sample representativeness concerns (see
Table G.1), Standard errors are clustered at the commuting zone level because postings
within the same local labor market are likely to share unobserved shocks (e.g., local
demand, cost of living, state policies), inducing correlated residuals across ads within CZs

over time.

We exploit the rich information contained in online job ads to construct a vector of
controls X;;, that rules out major sources of spurious correlation. Because such additional
information are present only for a subset of job ads, we present two specifications. In
a basic specification that maximizes the number of observations, we add only 3-digit
occupation fixed effect, dummies indicating the commuting zones where the ad is posted,
and dummy variables for skill vector length bins. In our favorite specification, we include
firm fixed effects, to account for wage differences driven by firms (Abowd et al., 1999;

Song et al., 2019) due for example to differences in rents and productivity.

Attributing a causal interpretation to estimated returns to low-carbon ads is not possible
for several reasons e.g. ads posting wage information may be self-selected, both within
and across occupations (e.g. Banfi and Villena-Roldan, 2019) and an exogenous source
of variation is absent here. Nonetheless, the most demanding specification rules out the
possibility that major sources of endogeneity, such as pre-existing firm-specific rents and
productivity levels, or occupation-level measures of exposure to other structural factors

are contaminating the estimates of low-carbon wage premium.

We are stacking 3 years to look at the dynamics and smoothen yearly fluctuations. This also allows us to
increase sample size.
In particular, five dummies corresponding to skill vector lengths of 1-4, 5-8, 9-12, 13-16, 17+ are included.
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5.2 Low-carbon wage premium

Table 4 presents the main result on the wage premium associated with low-carbon jobs
relative to similar jobs. Overall, we find that low-carbon job ads offer higher wages,
compensating for their higher skill requirement of low-carbon roles. Focusing on the
basic specification (columns 1, 3 and 5), returns are more pronounced in the earlier
period (2010-2012) compared to the later period (2017-2019), consistent with shifts in
U.S. climate policy after the green ARRA stimulus. Relative to salaries in similar jobs,
low-carbon jobs command a 7.9% premium in the first period of the ARRA green push
(column 1) and 4.5% in the second period characterized by a reduced ambition in U.S.

green policies (column 3).

Table 4: Relationship between low-carbon job and wage offer

2010-2012 2017-2019 2010-2019
(1) (2) (3) (4) (5) (6)
Job is low carbon 0.079%%*  0.052*%**  0.045***  0.030***  0.065***  (0.037*F**

(0.010)  (0.010)  (0.005)  (0.004)  (0.005)  (0.004)
Mean wage ($2019) 66,352 70,019 58,823 57410 60461 59,554

Observations 759,507 273,544 2,418,122 1,600,343 4,748,666 2,578,408
R? 0.27 0.74 0.23 0.69 0.24 0.66
Year FE Yes Yes Yes Yes Yes Yes
Skill vector length FE Yes Yes Yes Yes Yes Yes
Commuting Zone FE Yes Yes Yes Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes

*p < 0.1, " p < 0.05, ¥* p < 0.01

Notes: We stack the data for the 6 key occupations identified in section 2.5, weighting them by BLS employment. Within
each column, we present coefficient estimates and standard errors corresponding to estimates of equation 3. Skill vector
length fixed effects are grouped as follows: 1-4, 5-8, 9-12, 13-16 and 17+ skills per job ad. Standard errors are clustered at
the commuting zone level.

Importantly, the low-carbon wage premium are substantially reduced when we include
firm fixed effects (columns 2, 4 and 6). Quantitatively, the size of the premium is reduced
by more than one-third compared to the basic specification: 5.2% in the first period,
3.0% in the second and to 3.7% overall. Because firm fixed effects capture rents and
productivity differentials unrelated to low-carbon tasks, this specification is the most
accurate and reliable to quantify the size of the low-carbon wage premium. By failing
to account for firm wage differentials, previous research tends to overstate the size of the
green wage premium (Vona et al., 2019; Bluedorn et al., 2023; Curtis and Marinescu,
2023; Kuai et al., 2025; Whittard et al., 2025). This finding also implies that workers may

not be fully compensated for their better skillsets in low-carbon roles.

The key role of firm fixed effects in accounting for the low-carbon wage premium suggests

some positive sorting of low-carbon work into firms that pay higher wages. That is, higher
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paying firms also exhibit a higher share of low-carbon jobs. This insight is supported by
correlating the firm share of low-carbon jobs and the firm fixed effects (see Appendix

Table G.2 and Figure G.2).

Next, we estimate the low-carbon wage premium separately for the key six occupations
defined in Section 2.5. Our estimates in Table G.8 and Figure G.1) suggest that the
low-carbon wage premium and its decline varies substantially by occupation. Most oc-
cupations display a positive premium in the early period, especially Technicians (14%),
Business Specialists (11.2%), and Installers (8.5%), but this premium declines in the
later period to 6.4%, 10% and 5.6% respectively. The decline is particularly pronounced
in high-skilled STEM occupations (i.e., Engineers and Scientists), where the low-carbon
wage premium even becomes negative in the later period. Besides on the phasing out
of the ambitious green subsidies program under the ARRA, the narrowing of the low-
carbon wage premium can reflect labour market dynamics. On the one hand, Figure 1
showed that the demand of low-carbon roles slowed down especially for high-skilled work-
ers, possibly reflecting a productivity differentials between STEM employed in low-carbon
vs. non-low-carbon jobs. On the other hand, the adjustment in the supply of low-carbon
training and educational programs may have contributed to absorb the skill-related part of
the premium, especially in low- and medium-skilled occupations. A detailed investigation

of these channels is beyond the scope this paper and is left for future research.

We also estimate wage premia for high-carbon jobs using the same specification of equation
3. Table G.9 in the Appendix shows that the high-carbon wage premium is significantly
higher than the low-carbon one in the basic specification. The premium is strikingly high
and stable (around 17%) especially in Construction and Extraction jobs, while it declined
substantially in Engineering jobs (from 26% in 2010-2012 to 6.1% in 2017-2019), possibly
reflecting the small number of high-carbon engineering ads in our sample. Notice that
the premium for low-carbon role in construction is zero Remarkably, including firm fixed
effects significantly reduces these premia and their statistical significance. This points
to rent-sharing as the key driver of the high-carbon wage premium, also highlighting the
traditional strength of unions in fossil-fuel sectors (Haywood et al., 2024; Muttitt and
Kartha, 2020; Carley and Konisky, 2020).

The declining low-carbon wage premium alongside a relatively high wage premium for
high-carbon jobs in similar occupations (i.e. construction and engineering) reinforces the
concerns around the relative attractiveness of low-carbon jobs. This might draw skilled
engineers and construction workers, in short supply, to high-carbon industries, diminishing
the talent pool to tackle climate issues (Popp et al., 2024). In particular, the presence

of large wage gaps in occupations like Engineering and Construction & Extraction where

In this case, firm fixed effects are retrieved from regressing the specification of equation 3 without the
low-carbon dummy.
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we expect transitions from brown to green, is consistent with previous findings that few

workers have transitioned from high- to low- carbon jobs so far (Curtis et al., 2023).

5.3 Returns to skill complexity and skill types

Section 4.2 documented higher skill complexity of low-carbon jobs. To reinforce this, we
estimate the differential returns to complexity in low-carbon ads by replacing the skill
vector length dummies with the logarithm of the number of skills specified in the ad
(proxy for skill complexity), interacted with the low-carbon dummy. We find significantly
higher wage offers in low-carbon ads, only for ads posting more than 2.7 skills (based
on specification (9) in Appendix Table G.10. See also Figure 3.). The low-carbon wage
premium is zero below that threshold, corresponding to the 29*" percentile. This result
is consistent with the fact that low-carbon ads demand more skills, which is rewarded in

the job market.

7.5%
5.0%
2.5%

0.0%

— e

0 1 2 3 4
log(skills count)

Figure 3: Marginal effect of job ad complexity on low-carbon wage gap

Notes: We stack the data for the 6 key occupations identified in section 2.5, weighting them by BLS employment. We
estimate specification (9) of Table G.10 across our 6 occupations of interest over the preiod 2010-2019. The plotted line
presents the marginal effect of the interaction between a job ad being low-carbon and the logarithm of its number of skills.
The shaded area indicates the 95% confidence interval, with standard errors clustered at the CZ level.

Figure G.3 shows the coefficient capturing the returns to skill complexity for low-carbon
ads by key occupation. Returns to skill complexity are generally higher in low-carbon ads
across occupations, reflecting growing demand for diverse skills in green industries. The
exceptions are Engineers and Construction workers, for whom returns to skill complexity
are lower in low-carbon jobs. Our findings resonate with research showing that more
diverse and complex skill sets are usually associated with higher earnings (Anderson,
2017; Deming, 2017; Neffke, 2019; Stephany and Teutloff, 2024). For instance, using
online freelance project data, Stephany and Teutloff (2024) show that the value of a given
skill increase with the number of other complementary skills required to perform a task,

and this effect is stronger for new skills such as those related to Al. Because both Al and
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low-carbon tasks are related to new technologies, the higher value of complex skill sets
likely reflects still ill-defined skill requirements in new work, which reward workers with

versatile skill portfolios.

Figure G.3 reports the coefficient capturing the returns to skill complexity for low-carbon
ads by key occupation. Returns to skill complexity are generally higher in low-carbon ads
across occupations, reflecting growing demand for diverse skills in green industries. The
exceptions are engineers and construction workers, for whom returns to skill complexity
are lower in low-carbon jobs. Our findings align with research showing that broader, more
complex skill sets are typically associated with higher earnings (Anderson, 2017; Deming,
2017; Neffke, 2019; Stephany and Teutloff, 2024). For example, using online freelance
project data, Stephany and Teutloff (2024) show that the value of a given skill increases
with the number of complementary skills required to perform a task, and that this effect
is stronger for new skills such as those related to Al. Because both Al and low-carbon
tasks are tied to new technologies, the higher value of complex skill sets likely reflects
still-ill-defined skill requirements in new work, which disproportionately reward workers

with versatile skill portfolios.

Lastly, drawing insights from multidimensional skill models (Guvenen et al., 2020; Dem-
ing, 2023), we explore returns to specific sets of skills in low-carbon jobs by interacting the
low-carbon ad dummy with measures of the importance of technical, cognitive (including
IT skills), and social (including managerial) skills in regressions. Appendix Table G.11
demonstrates that while technical, social and cognitive skills are valuable across all occu-
pations, returns to social skills are particularly pronounced in low-carbon jobs. In turn,
technical and cognitive skills are less valuable in low-carbon jobs. The lack of additional
returns to technical skills in low-carbon ads may be due to technical skills being inherent
to the core skill set required for the key occupations studied here, resulting in fewer high-
pay ads emphasizing them. Conversely, the high returns to social skills in low-carbon roles
align with a broader trend highlighted by Deming (2017), where social skills command
higher pay in emerging jobs such as those in low-carbon. However, these high returns to
social skills may also indicate a firm’s emphasis on projecting a green corporate image
through communication rather than substantial investments in green technologies (Chen,
2022). Future work could account for worker-job sorting and firm-level decarbonization

strategies to further evidence the specific skills and green wage premium link.

We show that our results remain qualitatively similar under multiple robustness checks
in Appendix G, including: winsorizing postings with extreme skills vector lengths (> 30)

(Table G.3); using a consistent sample (Table G.4); excluding of 3-digit occupation fixed

We use the log of the number of technical, cognitive and social skills that are advertised in the post.

These patterns are confirmed when we use a binary measure of the presence of technical, cognitive and social
skills in the ad (see Table G.12 in the Appendix).
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effects (Table G.5); adding industry (NAICS 2-digit) and education requirement fixed
effects (Table G.6); and estimating without BLS employemnt weights (Table G.7). We
also estimate a fully flexible specification that interacts the low-carbon indicator with
year fixed effects (Appendix Table G.13) as these are more general than the piecewise-
constant time structure implied by stacking years into subperiods, because they allow

arbitrary common shocks and non-parametric dynamics in the premium.

Results on wage premium are also robust to key design choices in the low-carbon skill
selection algorithm including alternative cut-offs and the inclusion or exclusion of gray

skill clusters, as shown in Appendix Table 1.5 and Figure I.2.

6 Spatial gaps

One of the key challenges in delivering a “just transition” and enhancing the politi-
cal acceptability of the green transition is to ensure that displaced manual workers in
carbon-intensive industries or left-behind regions can find new jobs with similar pay and
working conditions (Vona, 2019; Weber, 2020; Hanson, 2023). Addressing their prospects
is important, also to neutralize job killing arguments used by fossil fuel lobbies to oppose

climate action (Vona, 2019).

Evidence from deindustrialization shows that negative shocks are spatially concentrated
and persistent, with multiplier effects that propagate through local demand linkages (Au-
tor et al., 2016, 2021); accordingly, regions heavily reliant on carbon-intensive activities
are likely to face larger and longer-lasting impacts (Hanson, 2023). Against this back-
ground, this section seeks to deepen understanding of the spatial distribution of high- and
low-carbon jobs focusing on low-skilled jobs, to help better manage the negative effects

of climate policies.

We compare the geography of emerging low-carbon opportunities with that of incumbent
high-carbon employment. Specifically, we juxtapose low-carbon vacancies (flows) job ads),
which proxy where new demand is arising in the short run (Deming and Kahn, 2018;
Atalay et al., 2020), with high-carbon employment (stocks), which better capture the
location of workers at risk in legacy, declining industries central to the U.S. just-transition
debate (Weber, 2020; Popp et al., 2021; Autor et al., 2021; Hanson, 2023). This approach
also aligns with recent evidence that location—rather than skill per se—poses a first-order
barrier to reallocating fossil-fuel workers into clean energy, given limited co-location of

opportunities despite substantial skill overlap (Lim et al., 2023).

Figure 4B maps the top 15% of areas with the highest shares of high-carbon, low-skilled

employment. These jobs are highly spatially concentrated around resource-extraction

In this comparison, we use new postings in all low-skilled low-carbon occupations, rather than restricting
the pool to the 2 key low-carbon manual occupations identified in section 2.5.
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centers including Wyoming, West Virginia, Oklahoma, Texas and the Appalachian region,
echoing previous findings (Weber, 2020; Popp et al., 2021). In contrast, low-carbon,
low-skilled vacancies are more dispersed (Figure 4A), consistent with the predominance
of construction and installation roles (see Appendix Table H.6) and with findings that
clean-energy hiring often occurs in licensed /certified trades with shorter formal-education

requirements and comparatively strong wage floors (Muro et al., 2019b).

Locational Gini coefficient estimates are roughly twice as high for high-carbon (0.69) as
for low-carbon (0.34) ads (Appendix Table H.1). In terms of spatial overlap, we find a
positive, statistically significant correlation between the share of high-carbon employment
and low-carbon job-ad shares (Appendix Table H.2). Weighted estimates, by ad count
or population, imply that a 1% increase in the high-carbon employment share is associ-
ated with a 0.07% increase in the low-carbon job ad share. As a robustness check, we

also compare flows to flows (low- and high-carbon job ads) and obtain similar patterns

(Appendix Table H.3).

Share of low carbon ads High carbon employment
0%100.6%  0.6%1t00.9% [ 0.9%t01.1% [l 1.19%to 1.5% [l 1.5% or more [ Top 15% commuting zones

Figure 4: Spatial distribution of (A) low-carbon vacancies and (B) high-carbon employ-
ment in low skilled occupations

Notes: These maps show the intensity of low and high-carbon jobs by commuting zone, averaged over the period 2010-2019,
for all low-skilled occupations (SOCs 31 to 53). Panel A shows the average share of low-carbon job vacancies; panel B shows
the the top 15% commuting zones with the highest shares of high-carbon employment. Source: Lightcast and BLS.

To benchmark magnitude, we compare this correlation to the distribution of spatial cor-
relations between shares of generic ads for any two 6-digit occupations within SOC 47
(Construction & Extraction) (Appendix Figure H.2). The correlation between low-carbon
ads and high-carbon employment exceeds 83% of within-SOC-47 correlations, and is larger

than prior estimates using solar and wind sectors (Curtis and Marinescu, 2023), thus sug-

Appendix Figure H.1 shows the spatial distribution of high-carbon job postings which instead, over-represents
growing jobs, for example in fracking.

As detailed in the notes of Table H.2, we regress the log transformed share of low-carbon jobs on log
transformed share of high-carbon jobs by commuting zone, using the log(1+x) transformation in order to avoid
dropping the CZ with zero values. In contrast, Curtis and Marinescu (2023) regresses the share of high-carbon jobs
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gests that the rise in low-carbon jobs could to some degree improve job finding rates of

displaced workers from the transition and lower reallocation costs.

However, we also find that while high-carbon employment in the U.S. concentrate in
poorer regions, low-carbon job creation is more prevalent in wealthier areas. Specifically,
a 1% increase in average per capita income is associated with an 0.2% increase in the
low-carbon ad share (Tables H.4) and a 0.1% fall in high-carbon ads (Table H.5). This in-
dicates that the low-carbon transition may exacerbate regional inequalities, raising equity
concerns consistent with Popp et al. (2021) and with evidence that geographic frictions

constrain transitions (Lim et al., 2023).

To avoid the persistent regional scarring seen in past deindustrialization episodes (Autor
et al., 2016, 2021), these patterns point to the value of targeted, place-based interventions
alongside occupation-specific reskilling (see also Muro et al., 2019b; Bartik, 2020; Rodrik
and Stantcheva, 2021). While fossil-fuel communities may attract some green job cre-
ation, further research on worker transitions—and on the design of effective place-based

support—remains warranted.

7 Conclusions

We develop a transparent, skill-based methodology to identify low-carbon jobs within
standard occupational groups and use it to provide the first job-level assessment of skill,
wage, and spatial gaps associated with the energy transition. By leveraging text from
established green classifications and applying NLP to a near-universe of U.S. online va-
cancies (2010-2019), we isolate low-carbon roles even within narrowly defined occupations
and firms, and cross-validate the resulting series against task-based measures. Our ap-
proach is flexible, and can be adapted to monitor evolving low-carbon skill needs and to

quantify reallocation frictions at varied spatial and sectoral scales, or for any technology

types.

Three results stand out from our analysis. First, low-carbon jobs systematically demand
more—and more diverse—skills than comparable non-low-carbon jobs in the same occupa-
tion (and firm), with larger within-occupation gaps than occupation-level analyses imply.
These gaps are highly occupation-specific: STEM roles tend to deepen core capabilities,

whereas business-oriented roles diversify beyond their occupational core.

Second, returns to skill complexity are higher in low-carbon roles, yet the associated wage
premia are modest and declining once occupation and firm heterogeneity are controlled

for—implying that earlier estimates overstated green premia to the extent they did not

(not log transformed) on the log transformed share of low-carbon jobs, excluding the CZ with zero values (log(x)).
When we replicate this specification, the coefficient is 0.006*** for the unweighted specification, and 0.007*** if
excluding CZ without high-carbon employment shares, exceeding the 0.004 found in Curtis and Marinescu (2023).
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net out firm wage differentials. The contrast with the higher, more persistent premia in

high-carbon jobs underscores a potential attractiveness gap that policy must address.

Third, the geography of transition is uneven. High-carbon employment remains con-
centrated in resource-extraction regions, while low-carbon hiring is more dispersed but
relatively stronger in wealthier areas. We document a positive yet modest spatial corre-
lation between incumbent high-carbon employment and emerging low-carbon vacancies,

consistent with location frictions that impede job reallocation even where skills overlap.

Taken together, our transparent methodology and detailed analysis substantially improves
the evidence on skills and wage gaps. Embedding such evidence in economic modeling
tools can improve the calibration of transition costs and inform the sequencing of cli-
mate, industrial, and workforce policies. Our results provide a stronger foundation for
designing comprehensive policy frameworks, including more nuanced insights. For ex-
ample, because the transition raises skill demands within occupations, generic upskilling
is unlikely to be cost-effective; targeted, occupation-specific retraining that distinguishes
specialization from diversification needs will be required (OECD, 2023). The modest and
falling low-carbon premia suggest complementary policies that improve job quality and
career ladders in low-carbon firms and projects. Finally, spatial frictions may warrant
place-based strategies that co-locate training and investment with at-risk communities to

curb reallocation costs and regional scarring.
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Supplemental Appendix

Appendix A Representativeness of the Lightcast dataset

Table A.1: Representativeness of Lightcast ads dataset vs. BLS employment

SOC major group Ad count Unweighted ad share BLS employment share
15 - Computer and Mathematical 26,454,718 12.3% 2.9%
11 - Management 26,436,466 12.3% 5.0%
29 - Healthcare Practitioners and Technical 25,852,786 12.0% 5.9%
13 - Business and Financial Operations 15,445,834 7.2% 5.1%
17 - Architecture and Engineering 7,135,965 3.3% 1.8%
25 - Education, Training, and Library 5,579,005 2.6% 5.8%
27 - Arts, Design, Entertainment, Sports, and Media 5,311,202 2.5% 1.3%
21 - Community and Social Service 2,541,329 1.2% 1.4%
19 - Life, Physical, and Social Science 2,280,480 1.1% 0.8%
23 - Legal 1,660,423 0.8% 0.8%
41 - Sales and Related 27,083,405 12.6% 10.6%
43 - Office and Administrative Support 23,623,473 11.0% 16.1%
53 - Transportation and Material Moving 8,513,938 4.0% 6.9%
35 - Food Preparation and Serving Related 7,786,029 3.6% 9.1%
49 - Installation, Maintenance, and Repair 7,060,358 3.3% 3.9%
51 - Production 5,766,857 2.7% 6.6%
31 - Healthcare Support 4,795,236 2.2% 2.9%
39 - Personal Care and Service 3,866,793 1.8% 3.1%
37 - Building and Grounds Cleaning and Maintenance 2,895,529 1.3% 3.2%
33 - Protective Service 2,395,055 1.1% 2.5%
47 - Construction and Extraction 2,384,535 1.1% 3.9%

45 - Farming, Fishing, and Forestry 152,616 0.1% 0.3%




Appendix B Identifying low-carbon skills and jobs

using job ads data

B.1 Implementation of the low-carbon skills selection algorithm
This section details the implementation of our data- and NLP-driven methodology for
identifying low-carbon skills, leveraging three well-established “green” textual sources: (i)
green tasks in the Occupational Information Network (O*NET), (ii) Cooperative Patent
Classification (CPC) group titles in class Y02, and (iii) trade product categories related
to green transport in PRODCOM as identified by Bontadini and Vona (2023).

Let T index the three source classifications. Each T" consists of items ¢t € T (O*NET task
descriptions, CPC group titles, or PRODCOM product names), and we partition items

into a green subset T, and a non-green subset 7,,,.

Step 1: Keyword extraction from textual sources

We extract keywords that distinguish low-carbon content from generic content within each
source. For each item ¢ € T (task from O*NET, CPC technology title from class Y02, or
transport product category title from PRODCOM), we run YAKE (Campos et al., 2020)
to extract uni- and bi-grams k together with item-specific relevance scores U,Zt € [0,1].
We then aggregate to the subset level using a continuous analogue of TF-IDF. Denote by

n}go the number of items in subset o € {g,ng} from which k was extracted; we define

T
g
U}Z:O _ log(ngo) Ztes% k,t,o
k,o

To isolate low-carbon content we work with the contrastive score

T _ T T
AO’k —_— Uk,g - Uk,ng’
taking a,fng = 0 when k never appears in T, For each source 7', we examine the

T

distribution of Ao} and set a source-specific threshold 77 at the discontinuity points

(Appendix Figure B.1).

Inclusion criterion: k enters the low-carbon keyword set iff Ao} > 77. With our baseline
thresholds this yields nx = 35 low-carbon keywords (Appendix Table B.1). Sensitivity to

771 is reported in Section B.2.

Step 2: Classify skills using three complementary signals

O*NET provides information about the specific task contents of narrowly defined occupations (867 BLS
Standard Occupational Classification (SOC) occupations). The 2009 Green Economy Program marked tasks that
are “green”, which covers not only climate change-related tasks but also tasks that contribute toward non-climate
environmental problems such as waste management, remediation activities, and activities associated with local
air and water pollution. See https://wuw.onetcenter.org/reports/GreenTask.html for more details.

The CPC defines the Y02 class as “Technologies or applications for mitigation or adaptation against climate
change”.

Equivalently: when a keyword is only extracted from green items, its non-green relevance is set to zero.
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We classify Lightcast skills as low-carbon using three independent signals, applied to the
universe of ~16,000 skills.

Signal A: Contrastive frequency in source texts (keyword-independent). For each skill s

T T
5.9 and Ms ng

based on direct lexical matches between the Lightcast skill name and items ¢t € T.

and source T, we count occurrences in the green and non-green subsets, n

T

Inclusion criterion: s is flagged as low-carbon by source T"if n ,,,

=0 and n;':g lies in the

top quintile of the T-specific distribution. This signal contributes 46 skills.

Signal B: Direct lexical match to low-carbon keywords. We compare the Lightcast skill

inventory to the keyword set from Step 1.

Inclusion criterion: s is flagged if its name is an exact (case-insensitive) string match to

any keyword k. This contributes 214 skills.

Signal C: Semantic match to low-carbon keywords. To bridge vocabulary differences be-
tween sources and Lightcast, we compute sentence-transformer embeddings (Reimers and
Gurevych, 2019) for each skill s and each keyword &, and obtain pairwise semantic prox-
imity scores fi5 . To identify the skills most closely related to the low-carbon keywords,
we aggregate these scores into a single proximity score per skill u designed to balance the

similarity to all low-carbon keywords and the high similarity with a specific low-carbon

. <zk us,k> (mgx e S us,k)

Nk

keyword:

Inclusion criterion: Skill s is flagged if u, lies in the top percentile across all skills. This
contributes 35 skills.

This step yields an initial set of 295 unique low-carbon skills after taking the union of the
sets of low-carbon skills yielded by signals A, B and C. Sensitivity tests to definitions of

the inclusion criteria in each signal are presented in Tables .1 and 1.2.

Step 3: Coverage extension through semantic clustering

To improve coverage of near-duplicate or closely related skills, we cluster the full Lightcast
inventory using agglomerative hierarchical clustering on skill embeddings (Bouguettaya
et al., 2015). The pairwise Euclidian distance in the embeddings space is compute for
all pair skills. Groups of skills whose embeddings are located within a sphere of a radius
smaller than a given threshold are grouped in the same semantic cluster. This yields 6,668
semantically coherent clusters of skills. Sensitivity to the clustering threshold is presented
in Tables I.1 and I.2.

Given the structure of the CPC patent classification, core climate technologies (e.g., solar and wind, EVs)
often appear outside Y02; for CPC only, we therefore relax the nz:ng = 0 requirement.
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Inclusion criterion: any skill belonging to a cluster that contains at least one low-carbon

skill from Step 2 is also classified as low-carbon. This adds a further 98 low-carbon skills.

Step 4: Exclusion for decarbonization focus, and of false positives

To sharpen the focus on decarbonization and remove spurious matches, we implement a
targeted exclusion list comprising: (i) green but non-climate activities (e.g., water treat-
ment, environmental remediation), (ii) generic energy skills not specific to decarboniza-
tion, and (iii) fossil-fuel-related skills that are semantically close to low-carbon content.
We operationalize this via a small set of excluded Lightcast skill categories and excluded
keywords (Appendix Table B.2). We then manually drop a documented set of brand-name
false positives (e.g., Solaris, Sungard, Greenplum) listed in Appendix Table B.3.

Our final algorithm yields 389 low-carbon skills, which we refer to as low-carbon job
identifiers (Appendix Tables B.5-B.7). A job posting is classified as low-carbon if it
contains at least one such identifier. Robustness to alternative cut-offs at each step is

reported in Sections B.2 and I.

B.2 Sensitivity of low-carbon skills selection to threshold choices
Using unsupervised scoring tools such as keyword extraction and semantic matching neces-
sitates choosing cutoff levels. To assess our choice of thresholds, we first check the sensitiv-
ity of our skills selection against the thresholds. Further, sensitivity analysis demonstrate

that our main results are robust to threshold choices.

Our low-carbon skill selection algorithm includes four thresholds and we assess how ad-
justing these changes the skills considered low-carbon. Overall, the following results give
us confidence in our choice of thresholds. First, for each textual source T', we adjust the
cutoff levels TgT for the relevance score in Step 1 by 10% in both directions. As shown in
Table 1.1, relaxing the threshold by 10% adds two extra skills related to Wastewater (not
relevant for low-carbon), while tightening the threshold by 10% instead removes 82 skills,
that are relevant for the low-carbon transition, thus validating our choice to select TgT
based on discontinuities in the distribution. Second, we test moving the semantic prox-
imity score threshold (top 1%) in Step 2 to 0.5% and 1.5%. The former removes 13 skills
while the latter adds 25 skills, including some very generic skills unrelated to low-carbon
(e.g. International Transportation Services) but also those relevant for low-carbon (e.g.
Wind Energy Project Management). Third, we adjust the direct text match frequency
threshold in Step 2 (top quintile) by 10% in each direction. Relaxing the threshold by 10%
adds 27 extra skills that are largely related to non-low-carbon environmental activities
like Biodiversity and Water, while tightening the threshold by 10% instead removes 23
skills, many of which are relevant for the low-carbon transition (e.g., Electric Vehicles and

Biofuel-related). Finally, we test the sensitivity to the number of cluster in the semantic
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clustering in step 2, by adjusting the threshold. Increasing it by 10% increases the number

of low-carbon skills by 24, or 6%), while reducing it by 10% decreases low-carbon skills
by 21, or 5.2%.
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Figure B.1: Distribution of YAKE scores and thresholds for low-carbon keyword inclu-

sion

Notes: Each panel corresponds to one of the three textual sources T'. They represent the distribution of the green relevance
score UkTg as defined in Step 2 for all keyword candidates (monogram or bigram) extracted by the YAKE algorithm from the
green subset of source T'. Thus, each dot is a keyword candidate. Keywords that were also extracted from the corresponding
non-green subsets are excluded according to Step 2’s inclusion criteria. The green horizontal lines represent the selected
threshold TgT in each source 7.

Table B.1: List of extracted low-carbon keywords

alternative energy
bicycle

biomass

carbon emission
change mitigation
climate change
coach

emissions mitigation
enabling technology
energy efficiency
energy efficient

energy management

fuel cell

gas collection
geothermal
ghg

green

green product
greenhouse gas
hydroelectric
indirect contribution
landfill gas
locomotive

photovoltaic

rail

railway

renewable energy
self-propelled
service vehicle

solar

solar energy
technologies relating
tramway

van

wind turbine
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Table B.2: Lightcast skill categories and keywords excluded from the low-carbon skills
donor pool

Excluded Lightcast skill categories

Fossil fuel Gas Drilling, Geology Software, Hydraulic Fracturing,
extraction Natural Gas, Oil Drilling, Oil Refining, Oil Reservoirs,
Oil Well Intervention, Oil Wells, Petroleum Science

Conventional Energy Management, Energy Solutions, Electrical
energy Power, Nuclear Energy, Power Plant

production

Non-climate Ecology, Environmental Geology, Geology Software,
environmental Hazardous Waste Management, Resource Management

and Restoration, Waste Management, Water Supply,
Water Testing and Treatment

Excluded power, generation, environment, monitoring except if

keywords match with renewable, solar and wind

Table B.3: False-positives skills matched by the NLP selection algorithm

IT Consumer Electronics, Greenplum, Green Hills Integrity, Network
File System (NFS), Solarwinds, Six Sigma, Sungard, Web
Development

Energy Electrical Control, Electric Motors, Energy Sales, Gas Exchange,

Gas Management

Policy Benefits Analysis, Human Resources, Investigative R&D, Policy

Recommendation, Site Assessments, Technology Research

Transport Aerospace Engineering, Bridge, Motor Vehicle Operation,

Passenger Vans, Transportation Systems, Vehicle Systems
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Table B.4: Skills re-integrated to test the robustness of results to the inclusion of gray
and non-climate green skills

CCS-related Geology Software

Nuclear Nuclear Energy
Non-climate Ecology, Environmental Geology, Hazardous Waste
green Management, Resource Management and Restoration, Waste

Management, Water Supply, Water Testing and Treatment
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Table B.5:

Low-carbon job identifiers/ low-carbon skills

Abatement Projects
Air Emissions

Air Pollution Control
Air Quality Control
Air Quality Regulations

Air Quality Remediation
Air Quality Standards
Alternative Energy
Alternative Energy Design

Alternative Energy Evaluation

Alternative Fuel Vehicles
Alternative Fuels

Automotive Energy Management
Benefits Research

Bicycle Planning

Bike Industry Knowledge
Biodiesel

Biodiesel Development
Biodiesel Industry Knowledge

Biodiesel Production

Biodiesel Research

Biodiesel Technology

Biofuel Product Development
Biofuel Production

Biofuels Applications

Biofuels Development
Biofuels Extraction
Biofuels Plant Safety
Biofuels Processing

Biofuels Processing Equipment

Biofuels Quality Assessment
Biofuels Research

Biofuels Research and Development
Biofuels Technology

Biomass

Biomass Conversion

Biomass Determination

Biomass Equipment

Biomass Feedstock Measurement

Biomass Fuel Gasification Systems

Biomass Gasification Processes
Biomass Plant Equipment
Biomass Pretreatment Evaluation
Biomass Processing Equipment

Biomass Production

Abatement Projects
Air Emissions

Air Pollution Control
Air Quality Control
Air Quality Regulations

Biomass Research

Biomass Thermochemical Conversion
Biomass Transformation

Blower Doors

Building Performance

Carbon Accounting

Carbon Asset Management
Carbon Emissions Reduction
Carbon Footprint

Carbon Footprint Reduction

Carbon Management
Carbon Offsets
Carbon Reduction
Clean Energy
Climate Analysis

Climate Change

Climate Change Analysis

Climate Change Impact

Climate Change Mitigation Intiatives

Climate Change Policies

Climate Change Principles
Climate Change Processes
Climate Change Programs
Climate Change Research

Climate Change Simulations

Climate Data Analysis
Climate Information

Climate Management Research
Climate Outreach

Climate Policy

Climate Research

Climate Systems

Climate Theory
Commercial Solar Projects

Commercial Solar Sales

Concentrated Photovoltaic Technology
Cooling Efficiency

Cost-Benefit Studies

Direct Methanol Fuel Cells

Ecological Consulting

Efficient Transportation
Electric Vehicle

Electricity Regulation
Emission Reduction Projects

Emissions Analysis

Biomass Research

Biomass Thermochemical Conversion
Biomass Transformation

Blower Doors

Building Performance

Emissions Control Systems
Emissions Inspection
Emissions Inventories
Emissions Management

Emissions Mitigation

Emissions Reduction
Emissions Reduction Strategy
Emissions Standards
Emissions Testing

Energy - Efficient Systems

Energy Conservation

Energy Conservation Measures
Energy Conversion

Energy Cost Reduction
Energy Efficiency

Energy Efficiency Analysis
Energy Efficiency Assessment
Energy Efficiency Consultation
Energy Efficiency Improvement

Energy Efficiency Products

Energy Efficiency Research
Energy Efficiency Services
Energy Efficiency Supervision
Energy Efficiency Technologies
Energy Efficient Building

Energy Efficient Home Improvement
Energy Efficient Lighting

Energy Efficient Operations

Energy Efficient Transportation
Energy Law

Energy Loss Calculation
Energy Loss Reduction
Energy Outreach
Energy Reduction
Energy Saving Products

Energy Savings Calculations
Energy Supply Side Savings
Energy-Efficient Appliances
Equipment Effectiveness

Equipment Efficiency

Ethanol

Ethanol Distillation
Ethanol Recovery Methods
Facility Improvement

Facility Remodeling
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Table B.6:

Low-carbon job identifiers/ low-carbon skills (cont.)

Facility Renovation
Fuel Cell

Fuel Cell Analysis
Fuel Cell Applications
Fuel Cell Assembly

Fuel Cell Design

Fuel Cell Development
Fuel Cell Engineering
Fuel Cell Generator
Fuel Cell Modeling

Fuel Cell Performance Improvement
Fuel Cell Research

Fuel Cell System Design

Fuel Cell Testing

Fuel Cell Testing Equipment

Fuel Cell Theory
Fuel Cell Validation
Fuel Cell Vehicles
Fuel Efficiency

Gas Collection

Gas Collection Equipment
Gas Collection Systems
Geothermal

Geothermal Energy Plants

Geothermal Heat Systems

Geothermal Loop Systems
Geothermal Plant Equipment
Geothermal Plant Operations
Geothermal Production

Geothermal Production Management

Geothermal Sales

Global Warming

Global Warming Pollution
Green Architecture

Green Automotive Technologies

Green Building
Green Building Standards

Green Certified Construction Practices

Green Chemistry
Green Chemistry Methods

Green Communities
Green Contractor
Green Design
Green Distributor

Green Education

Facility Renovation
Fuel Cell

Fuel Cell Analysis
Fuel Cell Applications
Fuel Cell Assembly

Green Energy

Green Energy Marketing
Green Energy Promotion
Green Job Development

Green Manufacturing

Green Marketing

Green Plumbing

Green Plumbing Equipment Installation
Green Procurement

Green Real Estate

Green Retail

Green Retrofitting
Green Roof Design
Green Roof Installation

Green Roofing

Green Stocks

Green Strategy

Green Supplier

Green Techniques

Green Technology

Green Transportation
Green Walls

Greenhouse Gas
Greenhouse Gas (GHG) Emissions
Greenhouse Gas Accounting
Heating Efficiency

Heavy Rail

Heavy Rail Transit Systems
High Speed Rail

Industrial Ecology

Insulating Materials
Insulation

Insulation Efficiency
Insulation Installation
Landfill Design

Landfill Gas Collection

Landfill Gas Collection System Operation
Landfill Inspection

Landfill Operations

Light Rail

Light Rail Transit Systems

Lighting Systems

Locomotive Engineering

Locomotive Inspection

Locomotive Safety

Green Energy

Green Energy Marketing
Green Energy Promotion
Green Job Development

Green Manufacturing

Locomotive Safety Standards
Loose Insulation

Low Carbon Projects

Low Carbon Solutions

Low Energy Buildings

Methane Gas Collection System
Mitigation Projects

Natural Lighting Systems
Optical Data Storage

Organic Photovoltaics (OPV)

PV System Design and Drafting
PVNS

PVsyst

Performance Yield

Photovltaic Mounting Solutions

Photovoltaic (PV) Energy Production
Photovoltaic (PV) Equipment
Photovoltaic (PV) Systems
Photovoltaic Energy

Photovoltaic Solutions

Photovoltaic System Design
Photovoltiac (PV) Module Evaluation
Pollution Control

Pollution Control Equipment

Pollution Control Systems

Pollution Prevention

Pollution Regulation

Polymer Electrolyte Membrane Fuel Cells
Public Transit Operations

Public Transit Systems

Public Transportation System
Rail Equipment Maintenance
Rail Equipment Repair

Rail Industry Knowledge

Rail Operations

Rail Safety
Rail-Track Laying
Railroad Conducting
Railroad Design
Railroad Engineering
Railroad Safety
Railway Signaling
Railway Systems
Renewable Energy

Renewable Energy Consultation
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Table B.7: Low-carbon job identifiers/ low-carbon skills (cont.)

Renewable Energy Development
Renewable Energy Equipment
Renewable Energy Industry Knowledge
Renewable Energy Installation

Renewable Energy Markets

Renewable Energy Supply
Renewable Energy Systems
Renewable Resources
Residential Energy Conservation

Residential Energy Efficiency

Retrofitting

Silicon Solar Cell

Smart Grid

Smoke Emissions Reduction
Soil Tillers

Solar Application

Solar Array Production Calculation
Solar Boilers

Solar Cell

Solar Cell Design

Solar Cell Equipment

Solar Cell Manufacturing

Solar Cell Manufacturing Equipment
Solar Collector Installation

Solar Consultation

Solar Contractor

Solar Design

Solar Development

Solar Electric Installation

Solar Energy

Solar Energy Components

Solar Energy Industry Knowledge
Solar Energy Installation Management
Solar Energy System Development

Solar Energy System Installation

Solar Energy Systems

Solar Energy Systems Engineering
Solar Engineering

Solar Equipment

Solar Farm

Solar Heat Absorption Reduction
Solar Heating

Solar Hot Water Heating Systems
Solar Installation

Solar Manufacturing

Renewable Energy Development
Renewable Energy Equipment
Renewable Energy Industry Knowledge
Renewable Energy Installation

Renewable Energy Markets

Solar Module Assembly

Solar PV Generation Systems

Solar PV Hot Water Heating Systems
Solar Panel Assembly

Solar Panel Attachment

Solar Panel Fitting

Solar Panels

Solar Photovoltaic Business Development
Solar Photovoltaic Design

Solar Photovoltaic Engineering

Solar Photovoltaic Installation

Solar Photovoltaic Panels

Solar Photovoltaic Performance Improvement
Solar Photovoltaic Research

Solar Photovoltaic Technology

Solar Power Electrical Work

Solar Power Purchase Agreement Sales
Solar Power System Design

Solar Products

Solar Purchasing Management

Solar Roofing System Installation
Solar Roofs

Solar Sales

Solar Sales Management

Solar Start Ups

Solar Systems

Solar Technology

Solar Thermal Installation
Solar Thermal Systems

Solar and Wind Energy

Spray Foam (Insulation)

Storage Management Technologies
Streetcars

Sustainability Campaigns
Sustainability Consulting
Sustainability Marketing
Sustainable Architecture
Sustainable Design

Sustainable Energy

Sustainable Engineering

Sustainable Manufacturing
Sustainable Materials
Thermochemical Conversion
Thermochemical Research

Tillage

Solar Module Assembly

Solar PV Generation Systems

Solar PV Hot Water Heating Systems
Solar Panel Assembly

Solar Panel Attachment,

Trams

Transit Systems

Weatherization

Weatherization Installation

Wind Commissioning

Wind Consultation

Wind Energy Engineering

Wind Energy Industry Knowledge
Wind Energy Operations

Wind Energy Operations Management

Wind Farm Analysis
Wind Farm Construction
Wind Farm Design
Wind Field Operations

Wind Generator Assembly

Wind Integration Studies
Wind Power

‘Wind Power Development
Wind Turbine Construction
‘Wind Turbine Control System

Wind Turbine Equipment

Wind Turbine Equipment Testing

Wind Turbine Fabrication

Wind Turbine Performance Improvement
Wind Turbine Production

Wind Turbine Service

‘Wind Turbine Technology

Wind Turbines

Zero- Energy Buildings
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Table B.8: Top 50 low-carbon identifiers observed in job ads

Low carbon identifier Ad count Low carbon identifier Ad count
Insulation 226,247 Transit Systems 24,469
Energy Efficiency 190,005 Pollution Control 24,326
Energy Conservation 151,033 Fuel Efficiency 24,003
Renewable Energy 150,605 Insulation Installation 23,948
Retrofitting 109,361 Green Building 23,798
Solar Energy 66,983 Fuel Cell 23,616
Climate Change 49,415 Public Transit Systems 22,537
Clean Energy 42,839 Electric Vehicle 22,392
Solar Sales 42,122 Equipment Effectiveness 21,774
Wind Turbines 40,848 Energy Reduction 21,686
Pollution Prevention 40,488 Alternative Fuels 21,507
Wind Power 39,313 Geothermal 18,448
Equipment Efficiency 38,109 Greenhouse Gas 17,757
Building Performance 37,053 Solar Installation 17,349
Air Emissions 36,787 Weatherization 17,013
Smart Grid 31,704 Sustainable Energy 16,088
Solar Panels 31,610 Energy Conservation Measures 15,357
Photovoltaic (PV) Systems 29,799 Solar Systems 15,068
Alternative Energy 29,668 Green Energy 14,848
Sustainable Design 28,336 Biomass 14,094
Air Pollution Control 28,197 Emissions Management 13,845
Emissions Testing 27,761 Facility Improvement 13,526
Ethanol 27,722 Rail Operations 12,309
Efficient Transportation 26,194 Solar Consultation 11,357
Light Rail 25,897 Locomotive Engineering 10,355
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Table B.9: Example of low-carbon ads

Title SOC Location Degree Annual wage  Skills
Senior Planner 13-1121 - Meeting, Upper Master’s 51k - 88k Bicycle Planning, Editing,
Convention, and Marlboro, Environmental Science, Grant
Event Planners Maryland Applications, Planning,
Transit-Oriented Development,
Writing
Facilities 17-1011 - Tallahassee, Bachelor’s 35k - 40k Green Building, Budgeting, Capital
Planner Architects, Except  Florida Planning, Construction Management,
Landscape and Planning, Project Management,
Naval Spreadsheets, Urban Planning
Chemical 17-2041 - Chemical Houston, Bachelor’s 180k - 200k Energy Efficiency, Business
Engineer Engineers Texas Acumen, Chemical Engineering,
Performance Appraisals, Process
Modeling, Project Management,
Simulation, Technical Support
Printer /Electronics1 7-3023 - Electrical Denver, Associate’s 51k - 51k Retrofitting, AC/DC Drives and
Technician and Electronics Colorado Motors, Break/Fix, Computer
Engineering Literacy, Description and
Technicians Demonstration of Products, Fault
Codes, Lifting Ability, Mechanical
Repair, Microsoft Office, Printers,
Repair, Troubleshooting
Post-Doctoral 19-2011 - Richmond, PhD 59k - 85k Green Chemistry, Chemical
Research Astronomers Virginia Engineering, Chemistry,
Scholar- Communication Skills, Design of
Chemical experiments (DOE),
Engineering High-Performance Liquid
Chromatography (HPLC), Lab Safety,
Laboratory Safety And Chemical
Hygiene Plan, Mentoring, Research,
Teamwork / Collaboration, Writing
Lead Solar 47-2231 - Solar Rancho High 37k - 41k Solar Installation, Customer
Installer Photovoltaic Cuca- School Contact, Electrical Experience, Fall
Installers monga, Protection, Operations Management,
California Physical Abilities, Roofing, Scheduling
Maintenance 49-9099 - Battle High 19k - 26k Energy Efficiency, Commercial
Mechanic Installation, Creek, School Driving, Repair, Troubleshooting
Maintenance, and ~ Michigan Technical Issues

Repair Workers,
All Other
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Table B.10: High-carbon occupations (SOC codes) and sectors (NAICS codes)

SOC 17-2151 Mining and Geological Engineers
codes 17-2171 Petroleum Engineers
47-5 Extraction Workers
NAICS 211 Oil and Gas Extraction
codes 2121 Coal Mining
213111 Drilling Oil and Gas Wells
213112 Support Activities for Oil and Gas Operations
2212 Natural Gas Distribution
23712 Oil and Gas Pipeline and Related Structures
32411 Petroleum Refineries
32412 Asphalt Paving, Roofing, and Saturated Materials
324191 Petroleum Lubricating Oil and Grease Manufacturing
4247  Petroleum and Petroleum Products Merchant
44711 Gasoline stations with convenience stores
44719 Other Gasoline Stations
45431 Fuel dealers
486 Pipeline Transportation
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Appendix C Occupational shares of low- and high-

carbon ads

Table C.2 reports the number of low-carbon ads and their employment-weighted share by
2-digit SOC occupation. While low-carbon jobs are found across a wide range of occupa-
tions (see also Figure C.1 for the evolution of the share of low-carbon ads by occupation
and sectors (see Appendix Table C.4), five 2-digit SOC groups exhibit notably higher
shares: Business & Finance (1.6%); Architecture & Engineering (4.1%); Life, Physical
& Social Science (3.3%); Construction & Extraction (4.4%); Installation, Maintenance &
Repair (2.6%).

A more granular examination at the 3-digit SOC level for high-skilled occupations (Table
C.3) reveals substantial within-occupation heterogeneity. For instance, within the Busi-
ness & Finance occupations (SOC 13), a high share of low-carbon ads is concentrated
among Business Specialists (13-1). Within Life, Physical, & Social Science (SOC 19),
Physical Scientists (19-2) stand out with a high share of 8%. In Architecture & Engineer-
ing (SOC 17), Architects, Engineers (17-2), and Technicians (17-3) all display intensities
above 3%, with the latter two also showing large absolute numbers of low-carbon vacan-
cies. The corresponding distribution of broad-skill shares within these groups is reported
in Appendix Table F.5.

Table C.1: Share of high-carbon ads by SOC minor group (3-digits), weighted by BLS
employment

SOC minor group High carbon ads Share within occupation
17-2 - Engineers 111,600 4.1%

47-1 - Supervisors of Construction and Extraction Workers 4,077 3.4%

47-2 - Construction Trades Workers 14,478 0.8%

47-3 - Helpers, Construction Trades 82 0.1%

47-4 - Other Construction and Related Workers 4,234 2.2%

47-5 - Extraction Workers 101,215 100.0%

Total 235,686 0.3%

Notes: This table shows the number and share of high-carbon ads by 3-digit SOC group, from 2010 to 2019, weighted by
BLS employment. Source: BLS and Lightcast.

We follow the standard SOC classification in defining high- and low-skilled occupations: major groups 11-29
are classified as high-skilled, while major groups 31-53 are classified as low-skilled. See Appendix D for the full
list.
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Table C.2: Low-carbon ads and weighted shares by 2-digit SOC group

SOC major group Low carbon ads Share within occupation
47 - Construction and Extraction 119,317 4.4%
17 - Architecture and Engineering 279,902 4.1%
19 - Life, Physical, and Social Science 53,152 3.3%
49 - Installation, Maintenance, and Repair 208,420 2.6%
13 - Business and Financial Operations 109,839 1.6%
45 - Farming, Fishing, and Forestry 1,389 1.3%
11 - Management 205,183 1.3%
51 - Production 60,383 1.0%
53 - Transportation and Material Moving 61,903 1.0%
33 - Protective Service 17,763 0.8%
23 - Legal 10,536 0.6%
15 - Computer and Mathematical 144,742 0.6%
27 - Arts, Design, Entertainment, Sports, and Media 21,746 0.4%
41 - Sales and Related 154,203 0.4%
37 - Building and Grounds Cleaning and Maintenance 12,362 0.4%
43 - Office and Administrative Support 97,811 0.4%
21 - Community and Social Service 4,423 0.3%
25 - Education, Training, and Library 18,970 0.2%
39 - Personal Care and Service 7,078 0.2%
29 - Healthcare Practitioners and Technical 35,582 0.1%
35 - Food Preparation and Serving Related 9,618 0.1%
31 - Healthcare Support 7,433 0.1%
Total 1,731,755 0.9%

Notes: This table shows the number and weighted (by BLS employment) shares of low-carbon jobs by 2-digit SOC group,
from 2010 to 2019. The occupations are ranked by the shares, separately for high-skilled and low-skilled groups.
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11 - Management

13 - Business and Financial Operations

15 - Computer and Mathematical

17 - Architecture and Engineering

19 - Life, Physical, and Social Science

21 - Community and Social Service

23 - Legal

25 — Education, Training, and Library

27 - Arts, Design, Entertainment, Sports, and Media
29 - Healthcare Practitioners and Technical
31 - Healthcare Support

33 - Protective Service

35 - Food Preparation and Serving Related
37 - Building and Grounds Cleaning and Maintenance
39 - Personal Care and Service

41 - Sales and Related

43 - Office and Administrative Support

45 - Farming, Fishing, and Forestry

47 - Construction and Extraction

49 - Installation, Maintenance, and Repair
51 - Production

53 - Transportation and Material Moving

0% 1% 2% 3% 4%

Figure C.1: Low-carbon ads intensity by occupation (2010-2019)

Table C.3: Share of low-carbon ads by SOC minor group (3-digits), weighted by BLS
employment

SOC minor group Low carbon ads Share within occupation
13-1 - Business Operations Specialists 89,424 2.4%
13-2 - Financial Specialists 20,415 0.4%
17-1 - Architects, Surveyors, and Cartographers 11,967 4.2%
17-2 - Engineers 213,423 4.3%
17-3 - Engineering and Mapping Technicians 54,512 3.6%
19-1 - Life Scientists 10,584 2.0%
19-2 - Physical Scientists 21,053 7.3%
19-3 - Social Scientists and Related Workers 8,422 2.0%
19-4 - Life, Physical, and Social Science Technicians 13,093 2.0%
Total 1,731,755 0.9%
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Table C.4: Share of low-carbon ads by NAICS sector (unweighted averages, 2010-2019)

Ad count Unweighted ad share
NAICS2 Generic  Low carbon High carbon  Generic Low carbon High carbon
11 - 7 Agriculture, Forestry, Fishing and Hunting” 130,495 2,741 186 97.8% 2.1% 0.1%
21 - "Mining, Quarrying, and Oil and Gas Extraction” 554,701 9,139 80,732 86.1% 1.4% 12.5%
22 - Utilities 594,468 78,818 8,816 87.2% 11.6% 1.3%
23 - Construction 1,998,827 79,385 4,358 96.0% 3.8% 0.2%
311 - Food Manufacturing 673,389 7,840 132 98.8% 1.2% 0.0%
312 - Beverage and Tobacco Product Manufacturing 384,732 2,559 1,411 99.0% 0.7% 0.4%
313 - Textile Mills 731 6 0 99.2% 0.8% 0.0%
314 - Textile Product Mills 52,939 547 21 98.9% 1.0% 0.0%
315 - Apparel Manufacturing 83,465 63 2 99.9% 0.1% 0.0%
316 - Leather and Allied Product Manufacturing 5,976 6 0 99.9% 0.1% 0.0%
321 - Wood Product Manufacturing 110,355 5,245 425 95.1% 4.5% 0.4%
322 - Paper Manufacturing 103,124 875 84  99.1% 0.8% 0.1%
323 - Printing and Related Support Activities 105,554 282 80  99.7% 0.3% 0.1%
324 - Petroleum and Coal Products Manufacturing 122,196 5,449 23,841 80.7% 3.6% 15.7%
325 - Chemical Manufacturing 1,975,635 17,131 1,258  99.1% 0.9% 0.1%
326 - Plastics and Rubber Products Manufacturing 78,987 722 7 99.1% 0.9% 0.0%
327 - Nonmetallic Mineral Product Manufacturing 210,998 4,606 1,225 97.3% 2.1% 0.6%
331 - Primary Metal Manufacturing 149,109 2,058 820  98.1% 1.4% 0.5%
332 - Fabricated Metal Product Manufacturing 284,661 2,231 167 99.2% 0.8% 0.1%
333 - Machinery Manufacturing 923,673 19,650 540 97.9% 2.1% 0.1%
334 - Computer and Electronic Product Manufacturing 1,937,570 25,997 877  98.6% 1.3% 0.0%
335 - "Electrical Equipment, Appliance, and Component Manufacturing” 171,811 6,332 84  96.4% 3.6% 0.0%
336 - Transportation Equipment Manufacturing 1,715,792 31,410 954  98.1% 1.8% 0.1%
337 - Furniture and Related Product Manufacturing 97,321 3,800 90  96.2% 3.8% 0.1%
339 - Miscellaneous Manufacturing 498,216 2,293 58 99.5% 0.5% 0.0%
42 - Wholesale Trade 1,587,068 20,628 1,083 98.7% 1.3% 0.1%
441 - Motor Vehicle and Parts Dealers 1,507,096 9,367 34 99.4% 0.6% 0.0%
442 - Furniture and Home Furnishings Stores 442,550 357 72 99.9% 0.1% 0.0%
443 - Electronics and Appliance Stores 761,021 446 17 99.9% 0.1% 0.0%
444 - Building Material and Garden Equipment and Supplies Dealers 2,008,522 5,953 14 99.7% 0.3% 0.0%
445 - Food and Beverage Stores 1,911,413 3,497 159 99.8% 0.2% 0.0%
446 - Health and Personal Care Stores 1,568,805 852 30 99.9% 0.1% 0.0%
447 - Gasoline Stations 452,843 472 1,058  99.7% 0.1% 0.2%
448 - Clothing and Clothing Accessories Stores 2,089,809 1,286 92 99.9% 0.1% 0.0%
451 - "Sporting Goods, Hobby, Book, and Music Stores” 1,089,087 6,611 73 99.4% 0.6% 0.0%
452 - General Merchandise Stores 4,684,056 3,180 633 99.9% 0.1% 0.0%
453 - Miscellaneous Store Retailers 1,152,443 6,438 128 99.4% 0.6% 0.0%
454 - Nonstore Retailers 553,924 4,404 253 99.2% 0.8% 0.0%
481 - Air Transportation 325,821 1,554 49 99.5% 0.5% 0.0%
482 - Rail Transportation 79,758 12,016 490 86.4% 13.0% 0.5%
483 - Water Transportation 51,745 486 40 99.0% 0.9% 0.1%
484 - Truck Transportation 1,987,524 11,890 553 99.4% 0.6% 0.0%
485 - Transit and Ground Passenger Transportation 216,968 8,712 70 96.1% 3.9% 0.0%
486 - Pipeline Transportation 57,010 2,308 8,661  83.9% 3.4% 12.7%
487 - Scenic and Sightseeing Transportation 923 8 0 99.1% 0.9% 0.0%
488 - Support Activities for Transportation 231,983 1,784 347 99.1% 0.8% 0.1%
491 - Postal Service 100,474 355 1 99.6% 0.4% 0.0%
492 - Couriers and Messengers 505,647 44,404 44 91.9% 8.1% 0.0%
493 - Warehousing and Storage 90,975 566 30 99.3% 0.6% 0.0%
51 - Information 6,017,082 33,920 10,443 99.3% 0.6% 0.2%
52 - Finance and Insurance 14,480,011 29,933 1,967  99.8% 0.2% 0.0%
53 - Real Estate and Rental and Leasing 2,944,807 20,735 674 99.3% 0.7% 0.0%
54 - "Professional, Scientific, and Technical Services” 14,800,810 179,189 15,435  98.7% 1.2% 0.1%
55 - Management of Companies and Enterprises 253,423 2,259 96 99.1% 0.9% 0.0%
56 - Administrative and Support and Waste Management and Remediation Services 8,384,872 78,714 3,758  99.0% 0.9% 0.0%
61 - Educational Services 8,810,942 60,284 622 99.3% 0.7% 0.0%
62 - Health Care and Social Assistance 25,549,338 34,045 6,431  99.8% 0.1% 0.0%
71 - 7 Arts, Entertainment, and Recreation” 1,276,173 6,704 261 99.5% 0.5% 0.0%
72 - Accommodation and Food Services 10,112,974 53,399 1,543 99.5% 0.5% 0.0%
81 - Other Services (except Public Administration) 2,780,061 35,831 679 98.7% 1.3% 0.0%
92 - Public Administration 5,018,504 86,727 3,406 98.2% 1.7% 0.1%
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Appendix D High- and low-skilled occupation

High skilled occupations

11 - Management Occupations

13 - Business and Financial Operations Occupations

15 - Computer and Mathematical Occupations

17 - Architecture and Engineering Occupations

19 - Life, Physical, and Social Science Occupations

21 - Community and Social Service Occupations

23 - Legal Occupations

25 - Educational Instruction and Library Occupations

27 - Arts, Design, Entertainment, Sports, and Media Occupations

29 - Healthcare Practitioners and Technical Occupations

Low skilled occupations

31 - Healthcare Support Occupations

33 - Protective Service Occupations

35 - Food Preparation and Serving Related Occupations
37 - Building and Grounds Cleaning and Maintenance Occupations
39 - Personal Care and Service Occupations

41 - Sales and Related Occupations

43 - Office and Administrative Support Occupations

45 - Farming, Fishing, and Forestry Occupations

47 - Construction and Extraction Occupations

49 - Installation, Maintenance, and Repair Occupations
51 - Production Occupations

53 - Transportation and Material Moving Occupations

95



Appendix E Evolution of low-carbon job shares

a)

8%
5%
2%
0%

8%
5%
2%
0%

2010

b)
0.3%

0.2%
0.1%
0.0%

17-3 - Engineering and
Mapping Technicians

13-1 - Business Operations
Specialists

17-2 - Engineers

2014 2018 2010 2014 2018 2010 2014 2018

47 — Construction and 49 - Installation,
Extraction Maintenance, and Repair

2014 2018 2010 2014 2018 2010 2014 2018
— Weighted by BLS employment ---- Unweighted

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
— Total -—- Low skill ---- High skill

Figure E.1: Evolution of low-carbon (a) and high-carbon (b) vacancy shares in the U.S.
by occupation (2010-2019)

Notes: Panel a): Plotted shares of low-carbon ads are first calculated at the 6-digit SOC occupation level as the ratio
between the number of low-carbon ads and the total ads within a 6-digit occupation, then averaged for each reported SOC
grouping weighing by 6-digit employment obtained from the BLS. Panel b): the same methodology is applied using the
definition of high-carbon ads described in Table B.10. Source: Lightcast and BLS.
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Table E.1: Share of low-carbon ads by year, weighted by BLS employment (2010-2019)

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Overall
All 0.83% 0.97% 0.94% 0.80% 0.81% 0.87% 0.85% 0.86% 0.87% 0.87%
Overall - High skill
All 0.33% 0.39% 0.34% 0.29% 0.29% 0.29% 0.28% 0.26% 0.26% 0.27%
13-1 - Business Operations Specialists 0.09% 0.13% 0.10% 0.07% 0.07% 0.07% 0.06% 0.05% 0.05% 0.06%
17-2 - Engineers 0.06% 0.06% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%
17-3 - Engineering and Mapping Technicians 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02%
Others 0.16% 0.18% 0.17% 0.15% 0.16% 0.15% 0.14% 0.14% 0.14% 0.15%
Overall - Low skill
All 0.50% 0.58% 0.59% 0.52% 0.52% 0.58% 0.58% 0.61% 0.60% 0.60%
47 - Construction and Extraction 0.16% 0.16% 0.15% 0.15% 0.16% 0.18% 0.20% 0.20% 0.18% 0.18%
49 - Installation, Maintenance, and Repair 0.08% 0.10% 0.09% 0.11% 0.09% 0.09% 0.10% 0.12% 0.12% 0.11%
53 0.07% 0.07% 0.09% 0.06% 0.06% 0.07% 0.07% 0.07% 0.07% 0.07%
Within occupation group
Others 0.19% 0.25% 0.26% 0.20% 0.21% 0.23% 0.21% 0.22% 0.23% 0.24%
13-1 - Business Operations Specialists 2.96% 4.01% 3.21% 2.31% 2.07% 2.32% 2.04% 1.62% 1.71% 1.85%
17-2 - Engineers 515% 5.49% 4.53% 4.03% 3.84% 4.16% 4.12% 3.92% 3.96% 3.93%
17-3 - Engineering and Mapping Technicians 3.57% 4.15% 3.45% 3.27% 3.65% 3.44% 3.65% 3.51% 3.38% 3.53%
19-2 - Physical Scientists 7.70% 856% 7.29% 7.11% 7.28% 7.98% 6.31% 6.55% 7.12% 6.87%
47 - Construction and Extraction 3.99% 4.11% 3.85% 3.84% 3.97% 4.69% 5.03% 5.20% 4.61% 4.63%
49 - Installation, Maintenance, and Repair 2.10% 2.51% 2.35% 2.71% 2.32% 2.39% 2.57% 3.09% 3.13% 2.78%

Notes: Table E.1 presents the annual share low-carbon ads for each of the SOC occupational groups harboring the most
low-carbon positions. low-carbon shares are calculated at the SOC 6-digit level then weighted using mean employment by
6-digits occupation for the period 2010-2019 obtained from the BLS Occupational Employment and Wage Statistics.

o7



Appendix F  Skill gap

Table F.1: Keywords defining broad skills

Broad skill

Keywords

Lightcast skills

Cognitive

IT

Management

Social

Technical

problem solving, research, analytical, critical thinking,

math, statistics

Burning Glass Technologies Information Technology skill

cluster family

project management, system analysis, system evaluat™,
updat® kno*, using know*, consultation* advice*,

supervisory, leadership, management, mentoring, staff

communication, teamwork, collaboration, negotiation,

presentation

engineer®, technolog®, design, build*, construct™,
mechanic*, draft, lay* out, specfiy* techn® part*,
specfiy* techn* devic*, specify*, techn® equip*, estimat*

quant™ character®, technic*

123

1,588

484

78

133
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Cognitive IT Management Social Technical
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Figure F.1: Differences in broad skills by occupation

Notes: Each panel represents an occupation (vertical) and a broad skill category (horizontal). For each job type (generic,
low- or high-carbon), each panel shows the share of job ads that contains ezactly one or two or more (24, intensive margin)
skills in that broad skill category. Percentages reported correspond to unweighted shares of ads obtained directly from the
sample, as these refer to within-occupation shares. See text for full description including how the five broad skill categories
are defined.
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Table F.2: Skill gap

Cognitive IT Management Social Technical

1 24 1 24 1 24 1 24 1 2+

13-1 - Business Operations Specialists
Generic 26.1% 10.4% 21.9% 29.9% 26.9% 23.4% 28.8% 28.9% 16.9% 2.2%
Low carbon 26.9% 11.3% 21.4% 27.7% 26.5% 29.3% 28.1% 33.5% 22.0% 8.0%
17-2 - Engineers
Generic 26.3% 7.4%  20.3% 28.1% 25.2% 14.5% 27.1% 20.9% 262% 21.0%
High carbon 25.2% 5.6%  22.2% 16.9% 29.0% 14.5% 30.0% 20.7"% 27.6% 23.5%
Low carbon 28.0% 8.0% 23.6% 25.1% 30.2% 21.8% 31.2% 25.8% 29.7% 29.3%
17-3 - Engineering and Mapping Technicians
Generic 17.7% 3.3% 16.3% 17.1% 14.3% 5.6% 21.5% 12.4% 20.6% 9.6%
Low carbon 21.7% 4.2% 19.7% 21.1% 24.4% 124% 28.7% 185% 27.7% 15.8%

19-2 - Physical Scientists
Generic 34.2% 17.3% 15.9% 12.0% 20.3% 10.6% 25.3% 21.9% 15.9% 3.4%
Low carbon  37.2% 13.5% 18.4% 18.7% 26.1% 29.8% 27.3% 28.1% 22.6% 7.9%

47 - Construction and Extraction
Generic 6.7% 12% 55% 26% 8.6% 32% 122% 4.5% 135% 3.2%
High carbon 15.3% 1.8% 11.6% 12.6% 11.2% 4.7% 20.9% 9.1% 151% 3.4%
Low carbon  9.4% 1.1% 102% 3.7% 13.8% 4.4% 13.9% 11.2% 13.5% 5.1%

49 - Installation, Maintenance, and Repair
Generic 127% 1.9%  94% 75% 13.4% 6.6% 21.5% 9.8% 13.8% 3.5%
Low carbon 12.8% 2.3% 13.2% 9.0% 24.8% 9.6% 28.0% 16.4% 24.9% 5.7%

Notes: Within each occupation and ad category (generic or low-carbon), the value listed reports the unweighted sample
share of ads containing exactly one, or 2 or more skills in each of the five broad skill categories. E.g. 25.2% of generic
Business and Operations Specialists ads require exactly one Cognitive skill.
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Table F.3: Skill gap magnitude across commuting zones

i. Extensive margin

SOC group Cognitive  IT Management Social Technical
a) Low carbon vs Generic ads
13-1 - Business Operations Specialists 0.90% -0.30% -0.30% -0.60% 5.30% ***
17-2 - Engineers 1.70% ***  3.40% ***  5.00% *** 4.20% *** 3.40% *F*
17-3 - Engineering and Mapping Technicians  4.50% ***  4.10% *** 10.80% ***  7.50% ***  7.50% ***
19-2 - Physical Scientists 3.60% ***  2.90% ** 6.40% **F* 2.60% ***  7.20%
47 - Construction and Extraction 3.00% ***  5.10% ***  5.50% *** 2.00% ***  0.10%
49 - Installation, Maintenance, and Repair 0.20% 3.80% ***  11.50% ***  6.70% ***  11.20% ***
b) High carbon vs Generic ads
17-2 - Engineers -1.00% 2.10% ***  3.90% *** 3.10% ***  1.50% **
47 - Construction and Extraction 9.00% ***  6.40% ***  2.80% *** 8.90% ***  1.90% ***
c) Low carbon vs High carbon ads
17-2 - Engineers 2.70% **  1.30% **  1.10% * 1.10% 1.90% **
47 - Construction and Extraction -5.90% % -1.30% **  2.70% *** -7.00% *FF - _1.70% ***
ii. Intensive margin
SOC group Cognitive  IT Management Social Technical
a) Low carbon vs Generic ads
13-1 - Business Operations Specialists 1.30% * -2.10% *** 6.10% **+* 4.80% ***  6.00% ***
17-2 - Engineers 0.70% ** -2.90% - 7.30% *F* 5.00% ***  8.30% ***
17-3 - Engineering and Mapping Technicians 1.70% *** = 4.60% *** 7.30% *** 6.90% ***  7.00% ***
19-2 - Physical Scientists -2.80% *** 7.30% *FFF O 19.60% *** O 6.90% *** 5.30% FHF*
47 - Construction and Extraction 0.10% 1.50% ***  1.60% *** 7.30% *** 2.10% ***
49 - Installation, Maintenance, and Repair 0.50% ***  1.60% ***  3.10% *** 6.90% ***  2.30% ***
b) High carbon vs Generic ads
17-2 - Engineers -1.60% ***  -11.00% ***  0.20% -0.10% 2.80% **
47 - Construction and Extraction 0.80% ***  10.30% ***  1.70% *** 4.90% ***  0.40% **
c) Low carbon vs High carbon ads
17-2 - Engineers 2.30% ***  8.10% *F*  7.10% *** 5.10% ***  5.50% ***
47 - Construction and Extraction -0.70% *** -8.80% ***  -0.20% 2.40% ***  1.70% ***

Notes: Similar to Table F.2, we compute for each occupation and ad category (generic, low- or high-carbon), the unweighted

share of ads containing exactly one (extensive margin), or 2 or more skills (intensive margin) in each of the five broad skill

categories. We repeat this calculation in each commuting zone as defined in section 6. We then use the resulting distribution

to test the statistical significance of the skill gap magnitude between each ad category pair. Panel a) reports the difference

between low-carbon and generic ads in each occupation. A positive (resp. negative) value indicates that low-carbon ads

require the particular broad skill considered more (resp. less) frequently. FE.g. the share of low-carbon Engineers ads

requiring exactly one technical skill is 4.2% higher than their generic counterparts, while the share requiring two or more

technical skills is 8.3% higher. Stars indicate the statistical significance of this difference, with three stars correspond to

the 1% threshold. Similarly, Panel b) compares the skill intensity of high-carbon and generic ads (a positive value indicates

that high-carbon ads require more of the skill considered), and Panel c¢) compares the skill intensity of low and high-carbon

ads (a positive value indicates that low-carbon ads require more of the skill considered).
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Table F.4: Within-firm differences in skill vector length (winsorized at 30 skills per ad)
between low carbon and generic ads

13-1 - Business 17-2 - Engineers 17-3 - Engineering and
Operations Specialists Mapping Technicians
Low carbon 1.243%** 2.452%** 2.774%F*
(0.137) (0.147) (0.222)
Firm FEs Yes Yes Yes
Year FEs Yes Yes Yes
R? 0.31 0.27 0.41
Observations 6,549,642 2,957,995 1,397,391
19-2 - Physical 47 - Construction 49 - Installation,
Scientists and Extraction = Maintenance, and Repair
Low carbon 2.158%** 2.599*** 2.501%%*
(0.192) (0.232) (0.420)
Firm FEs Yes Yes Yes
Year FEs Yes Yes Yes
R? 0.42 0.53 0.47
Observations 284,835 1,235,908 5,017,358

*p < 0.1, ¥ p < 0.05, ** p < 0.01

Notes:The dependent variable is the skill vector length, which is regressed on a binary variable indicating whether a job
ad is low carbon or not, and on firm fixed effects. Standard errors are clustered at the firm level. * p<0.1, **p< 0.05, ***
p<0.01

w

average skill vector length
= N

Difference between low carbon and generic ads

o

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Figure F.2: Average skill vector length in generic and low carbon ads (2010-2019)

Notes: Difference in the unconditional mean of the number of skills low carbon ads and generic ads in our six focus
occupations.
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Table F.5: Share of ads containing a specific broad skill, by occupation

Cognitive 1T Management Social Technical
13-1 - Business Operations Specialists 36.5% 51.8% 50.4% 57.7% 19.2%
17-2 - Engineers 33.8% 48.2%  40.5% 48.5% 48.0%
17-3 - Engineering and Mapping Technicians 21.1% 33.5% 20.4% 34.2%  30.5%
19-2 - Physical Scientists 51.4% 284% 32.1% 47.6% 19.8%
47 - Construction and Extraction 8.5% 9.3% 12.4% 17.8% 17.0%
49 - Installation, Maintenance, and Repair 14.6% 17.1%  20.4% 31.6% 17.7%
All occupations 23.3% 30.7% 34.1% 42.6% 14.4%

F.1 Reskilling paths indicator

We introduce a new synthetic index that measures the divergent reskilling paths across
occupational groups.This index is derived from correlating two measures of skill impor-
tance that are constructed as Balassa indexes of revealed comparative advantage, varying
between -1 and 1. It can be widely applied to similar datasets and is particularly use-
ful for high-dimensional data like the skill vector in job vacancy data. It is in a similar
vein as Alabdulkareem et al. (2018) that use Balassa index to summarize O*NET data

constructing a measure of skill complementarity.

The first index termed “low-carbon skill coreness” (C%,) assesses the importance of of
a skill s in a low-carbon (i = g) occupation k relative to generic ads within the same
occupation. Similarly, a high-carbon skill coreness indicator assesses the importance in
high-carbon ads (i = hc). The second index termed “skill coreness” (Gg), asses the
importance of a skill s within a particular occupation relative to all other occupations.

Maintaining the notations of previous section, we define the two indexes as:

= % and Gy = %7 where f7, are defined as above. A positive value of
C", indicates that coreness of skill s in low-(or high-) carbon jobs within SOC k is greater
than its coreness across all jobs within that SOC, indicating higher demand from low- (or
high-) carbon jobs within that SOC. Similarly, a positive value of G indicates greater

demand for skill s within SOC j compared to its demand across all occupations.

The correlation coefficient between the two captures green reskilling paths: Reskilling] =
corrs(C%, Gg). This is obtained from a regression weighted by the share of each skill in
generic ads. If corry(CY., Gg) > 0, the skills required for low-carbon jobs in occupation j
belong to the core set of skills demanded by that occupation, indicating that a transition
to low-carbon jobs will require workers to further specialize in their main area of work.
Conversely, if corrs(C%., Gy) < 0, the skills required for low-carbon jobs in occupation j

are outside of the core skill set required by that occupation. Therefore, workers seeking
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green jobs must diversify their skill sets and acquire new skills the usual occupational

profile.
17-2 - Engineers 17-2 - Engineers 47 - Construction & 47 - Construction &
Extraction Extraction
1 - p=0.09%* 1 - p=0:11%
.
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Figure F.3: Specialization vs diversification by occupation excluding highly specific skills
(exlucing C¥, > 0.9)
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Figure F.4: Specialization vs diversification by occupation, restricted to the five key
skills categories
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Appendix G Wage regressions robustness

Table G.1: Wage sample balance

Full sample

Ad count Skills count Education Experience Salary

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

13-1 - Business Operations Specialists

Generic 9,636,203  11.5 75 135 5.4 3.9 2.6 62,241 35,585

Low carbon 89,329 14.8 84 138 5.2 4.3 3.0 69,972 36,898
17-2 - Engineers

Generic 4,270,532 119 74 150 4.2 5.2 3.1 84,558 36,146

High carbon 111,600 10.6 6.6 155 3.0 6.0 3.5 108,570 58,064

Low carbon 213,376 16.2 84 152 3.9 5.3 3.2 85,182 32,731
17-3 - Engineering and Mapping Technicians

Generic 2,224,020 9.5 6.8 114 5.2 3.7 2.7 48,356 24,900

Low carbon 54,493 14.5 78 125 4.6 4.3 2.9 56,624 25,991
19-2 - Physical Scientists

Generic 405,443 10.9 6.8 16.0 4.1 4.3 3.2 71482 42,134

Low carbon 21,048 15.7 85 159 4.1 4.3 3.2 68,883 29,015
47 - Construction and Extraction

Generic 2,141,068 6.3 5.6 6.8 6.2 3.7 2.5 46,385 25,543

High carbon 124,080 7.9 6.1 10.7 5.0 3.1 2.6 50,191 28,298

Low carbon 119,298 10.0 7.2 8.0 6.0 3.3 2.4 49,267 28,201
49 - Installation, Maintenance, and Repair

Generic 6,851,868 8.4 6.3 9.4 5.4 3.1 2.3 46,498 25,784

Low carbon 208,403 13.4 7.4 9.2 5.6 3.1 2.4 52,758 23,895

Has wage information

Ad count Skills count Education Experience Salary

Mean St. Dev. t-test Mean St. Dev. t-test Mean St. Dev. t-test Mean St. Dev.

13-1 - Business Operations Specialists

Generic 1,604,383  10.6 7.2 -0.88%F** 11.9 6.5 -1.54%** 3.2 2.3 -0.652*%** 62,241 35,585

Low carbon 17,767 13.8 8.5 -0.923%** 115 7.0 -2.27FF* 3.3 2.6 -0.991%** 69,972 36,898
17-2 - Engineers

Generic 558,875 11.2 7.4 -0.645%%F 145 4.7 -0.441%%* 44 3.0 -0.747*** 84,558 36,146

High carbon 7,525 9.4 6.9 -1.18%** 14.9 4.2 -0.563*** 5.9 3.5 -0.0982%* 108,570 58,064

Low carbon 28,701 16.5 9.4 0.226%** 14.8 4.4 -0.389%** 44 3.1 -0.882*%*F 85182 32,731

17-3 - Engineering and Mapping Technicians

Generic 482,236 8.6 6.5 -0.862%**  10.0 5.9 -1.47FF* 3.1 2.5 -0.637%** 48356 24,900

Low carbon 9,600 13.8 8.7 -0.766***  11.2 5.5 -1.3%* 3.6 2.5 -0.712%*% 56,624 25,991
19-2 - Physical Scientists

Generic 73,047 10.7 6.9 -0.268%**  15.1 5.0 -0.896*** 3.1 2.6 -1.24%F* 71482 42,134

Low carbon 6,409 17.0 9.3 1.37FF* 15.0 5.0 -0.911%%* 3.1 2.5 -1.23%* 68,883 29,015
47 - Construction and Extraction

Generic 601,438 6.1 5.5 -0.244%** 5.4 6.2 -1.39%** 3.5 2.4 -0.194%*% 46,385 25,543

High carbon 15,781 6.5 5.6 -1.33%** 8.4 6.1 -2.3%F* 3.2 2.6 0.124*%*% 50,191 28,298

Low carbon 31,786 9.4 7.6 -0.592%** 6.5 6.2 -1.51%F* 3.1 2.2 -0.193*%** 49267 28,201
49 - Installation, Maintenance, and Repair

Generic 1,329,697 8.0 6.2 -0.42%** 7.7 6.0 -1.62%** 3.0 2.2 -0.099%** 46,498 25,784

Low carbon 36,347 13.0 8.1 -0.387*** 8.2 6.0 -0.955%** 3.3 2.4 0.158*** 52758 23,895
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Has wage, NAICS 2 and degree information

Ad count Skills count Education Experience Salary

Mean St. Dev. t-test Mean St. Dev. t-test Mean St. Dev. t-test Mean St. Dev.

13-1 - Business Operations Specialists

Generic 464,994 12.8 7.6 1.33Fx* 15.3 1.9 1.85%** 3.2 2.2 -0.678%%* 61,644 30,900

Low carbon 5,200 16.9 8.9 2.11%¥* 15.7 2.3 1.91%* 3.3 2.4 -0.961%** 68,941 30,420
17-2 - Engineers

Generic 153,384 14.1 8.0 2.23%F** 16.1 0.7 1.1%%* 4.1 3.1 -1.04%* 87,233 31,952

High carbon 3,609 11.1 7.0 0.458**F  16.1 0.6 0.574%** 5.9 3.4 -0.102% 105,835 47,063

Low carbon 11,076 19.5 0.4 3.24%** 16.1 0.8 0.885%** 4.1 3.3 -1.22%F* 87,906 30,841
17-3 - Engineering and Mapping Technicians

Generic 96,432 10.8 7.3 1.31FxK 13.3 1.8 1.83%** 3.2 2.4 -0.536*** 51,132 24,703

Low carbon 2,918 16.7 10.2  2.19%** 13.8 1.9 1.28%** 3.7 2.5 -0.581%** 58,250 25,020
19-2 - Physical Scientists

Generic 31,508 12.4 6.8 1.43%** 16.7 1.6 0.752%** 3.0 2.6 -1.31%F* 71,872 38,084

Low carbon 2,692 18.1 8.5 2.44%** 16.8 1.7 0.894%** 2.7 2.3 -L.61*F* 71,802 26,513
47 - Construction and Extraction

Generic 76,338 9.1 6.6 2.73F** 12.3 1.0 5.44%** 3.6 2.3 -0.0535%** 48873 23,562

High carbon 4,253 9.2 6.7 1.35%%* 12.7 1.5 2.07%%* 3.0 2.2 -0.0613* 51,808 24,039

Low carbon 5,197 144 7.9 4.4k 12.3 1.1 4.31%%* 3.6 2.4 0.288%** 56,717 33,432
49 - Installation, Maintenance, and Repair

Generic 300,614 9.5 6.8 1.09%** 12.3 1.0 2.93%** 3.0 2.2 -0.101%%* 43,580 22,749

Low carbon 8,661 15.8 8.3 2.38%** 124 1.0 3.24%** 3.3 2.3 0.223%** 53,257 26,035

Has wage and firm information

Ad count Skills count Education Experience Salary

Mean St. Dev. t-test Mean St. Dev. t-test Mean St. Dev. t-test Mean  St. Dev.

13-1 - Business Operations Specialists

Generic 887,188 11.7 7.4 0.232%%* 11.5 6.8 -1.91%** 3.1 2.4 -0.737*%* 62,694 33,956

Low carbon 12,692 144 8.6 -0.359%**  11.2 7.2 -2.63%FF 3.1 2.5 -1.16™* 70,688 35,985
17-2 - Engineers

Generic 229,663 13.2 8.2 1.3%** 14.3 5.2 -0.726*** 4.1 3.1 -1.09%** 84,882 36,562

High carbon 3,218 11.3 7.8 0.709%** 14.3 5.2 -1.23%** 5.1 3.5 -0.899%*¥* 99932 57,942

Low carbon 15,491 18.6 9.4 2.34%*%* 14.6 4.6 -0.568%** 4.0 3.2 -1.32%%*% 84358 32,110
17-3 - Engineering and Mapping Technicians

Generic 227,752 9.9 7.1 0.389%** 9.5 6.0 -1.94%%* 2.9 2.5 -0.781*%*%* 49215 24,811

Low carbon 5,489 15.4 8.5 0.844%** 11.1 5.6 -1.4%%* 3.5 2.5 -0.844*%*%* 56,970 25,332
19-2 - Physical Scientists

Generic 40,457 11.6 7.2 0.653%** 15.1 5.3 -0.887*** 2.8 2.5 -1.56%** 76,640 44,204

Low carbon 4,494 17.3 8.9 1.6%** 15.0 5.2 -0.923%** 2.8 2.4 -1.54%%* 71,204 28,655
47 - Construction and Extraction

Generic 290,818 7.2 5.9 0.811%** 5.5 6.1 -1.3%** 3.6 2.5 -0.108%** 48,980 24,980

High carbon 9,368 7.4 5.9 -0.448%F* 7.9 6.2 -2.81%%* 3.2 2.5 0.191%*%% 49,620 23,475

Low carbon 17,606 11.0 7.8 1.01F¥* 6.8 6.2 -1.23%%* 3.2 2.2 -0.107*** 52,538 28,308
49 - Installation, Maintenance, and Repair

Generic 837,707 8.7 6.4 0.27FF* 7.4 6.0 -1.91%** 2.9 2.2 -0.199%** 46,675 25,479

Low carbon 24,911 13.9 8.2 0.494%** 7.9 6.0 -1.24%%* 3.2 2.3 0.0797*** 53,535 24,073

Notes: The subtables of Table G.1 provide descriptive statistics for each of the samples used in the specifications of Table
4. The t-tests reported are computed against the distribution of the respective variables in the full sample.

66



Table G.2: Correlation between firm-level share of low-carbon ads and firm-level wage
fixed effects

2010-2012 2017-2019 All years

(10) (11) (12)

Firm-level wage FE  0.006%%*  0.012%%F 0,011
(0.001)  (0.001)  (0.001)

Observations 41,015 277,146 341,803
R? 0.00042 0.0012 0.001

*p < 0.1, ¥ p < 0.05 ***p <0.01

Notes: Firm FEs are recovered by regressing the log of the offered salary on firm FE, controlling for year, skill vector length,
commuting zone and SOC (3-digits) FEs.

Table G.3: Relationship between low-carbon job and wage offer (job ad length winsorized
at 30 skills)

2010-2012 2017-2019 2010-2019
(1) (2) (3) (4) (5) (6)
Job is low carbon 0.079%%%  0.052%F%  0.045%%%  0.030%**  0.065%**  .037*%*

(0.010)  (0.010)  (0.005)  (0.004)  (0.005)  (0.004)

Observations 759,507 273,044 2,418,122 1,600,343 4,748,666 2,578,408
R? 0.27 0.74 0.23 0.69 0.24 0.66
Year FE Yes Yes Yes Yes Yes Yes
Skill vector length FE Yes Yes Yes Yes Yes Yes
Commuting Zone FE Yes Yes Yes Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes

*p < 0.1, ¥ p < 0.05, *** p < 0.01

Notes: The specifications of Table 4 are estimated on the initial and final periods of our sample, while winsorizing the skill
vector length to a maximum of 30 skills per ad. Standard errors are clustered at the Commuting Zone level.
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Table G.4: Relationship between low-carbon job and wage offer (consistent sample)

2010-2012 2017-2019 2010-2019

(1) (2) (3) (4) (5) (6)

Job is low carbon 0.064***  0.052*%*%*  0.054***  0.030***  0.071%FF  0.037***
(0.013) (0.010) (0.006) (0.004) (0.006) (0.004)

Observations 273,544 273,544 1,600,343 1,600,343 2,578,408 2,578,408
R? 0.28 0.74 0.23 0.69 0.24 0.66
Year FE Yes Yes Yes Yes Yes Yes
Skill vector length FE Yes Yes Yes Yes Yes Yes
Commuting Zone FE Yes Yes Yes Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes

*p < 0.1, ¥ p < 0.05, *** p < 0.01

Table G.5: Relationship between low-carbon job and wage offer (no SOC-3 FEs)

2010-2012 2017-2019 2010-2019
(1) (2) (3) (4) (5) (6)
Job is low carbon 0.079%**  0.052*%**  0.025%**  0.015***  0.050***  (.028***

(0.011)  (0.011)  (0.007)  (0.005)  (0.006)  (0.005)

Observations 759,507 273,544 2,418,122 1,600,343 4,748,666 2,578,408
R? 0.13 0.71 0.1 0.66 0.12 0.63
Year FE Yes Yes Yes Yes Yes Yes
Skill vector length FE Yes Yes Yes Yes Yes Yes
Commuting Zone FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes

*p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The specifications of Table 4 are estimated on the initial and final periods of our sample, while excluding 3-digits
SOC occupational code from our FE structure. Standard errors are clustered at the Commuting Zone level.
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Table G.6: Relationship between low-carbon job and wage offer (with industry and
education FEs)

2010-2012 2017-2019 2010-2019

(1) (2) (3) (4) (5) (6)

Job is low carbon 0.053*** 0.036™** 0.036*** 0.037*%* 0.071*** 0.035%**

(0.013) (0.012) (0.008) (0.007) (0.008) (0.007)

Observations 182,897 105,689 593,068 490,882 1,154,316 876,865
R? 0.42 0.74 0.4 0.69 0.39 0.66
Year FE Yes Yes Yes Yes Yes Yes
Skill vector length FE Yes Yes Yes Yes Yes Yes
Commuting Zone FE Yes Yes Yes Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes Yes Yes Yes
NAICS (2-digits) FE Yes Yes Yes Yes Yes Yes
Degree FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes

*p < 0.1, ¥ p < 0.05, ** p < 0.01

Notes: The specifications of Table 4 are estimated on the initial and final periods of our sample, while including 2-digit
NAICS industry codes and educational requirements in our FE structure. Standard errors are clustered at the Commuting
Zone level.

Table G.7: Relationship between low-carbon job and wage offer (unweighted)

2010-2012 2017-2019 2010-2019
(1) (2) (3) (4) (5) (6)
Job is low carbon 0.058***  0.040*%**  0.031*%**  (0.022***  (0.043***  (.029***

(0.009)  (0.007)  (0.004)  (0.003)  (0.004)  (0.004)

Observations 759,507 273,044 2,418,122 1,600,343 4,748,666 2,578,408
R? 0.27 0.73 0.24 0.66 0.25 0.64
Year FE Yes Yes Yes Yes Yes Yes
Skill vector length FE Yes Yes Yes Yes Yes Yes
Commuting Zone FE Yes Yes Yes Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes

*p < 0.1, ¥ p < 0.05, *** p < 0.01

Notes: The specifications of Table 4 are estimated on the initial and final periods of our sample, without weighting for BLS
employment. Standard errors are clustered at the Commuting Zone level.

69



Table G.8: Low-carbon job and wage offer relationship by occupation

2010-2012 2017-2019 2010-2019
(1) (2) (3) (4) (5) (6)
13-1 - Business Operations Specialists
Job is low carbon 0.112%*%*%  0.073***  0.101%**  0.032*%**  0.09%**  (.032***
(0.021) (0.015) (0.017) (0.009) (0.013) (0.007)
Observations 232,507 90,355 868,497 576,455 1,602,229 888,176
Low carbon ads 2,869 1,399 9,061 7,392 17,456 12,468
R? 0.1 0.74 0.08 0.68 0.09 0.64
17-2 - Engineers
Job is low carbon 0.022% -0.003 -0.035%F* 0 -0.007 0
(0.013) (0.011) (0.009) (0.008) (0.006) (0.006)
Observations 131,354 40,493 239,746 124,776 588,505 246,083
Low carbon ads 7,038 2,540 11,151 7,384 28,867 15,650
R? 0.13 0.75 0.1 0.62 0.1 0.6
17-3 - Engineering and Mapping Technicians
Job is low carbon 0.14%%F  0.083*%** 0.064***  0.006 0.076***  0.02*
(0.014) (0.024) (0.009) (0.013) (0.01) (0.01)
Observations 80,346 24,325 240,209 139,460 486,473 230,563
Low carbon ads 1,695 626 4,607 3,035 9,474 5,399
R? 0.15 0.79 0.12 0.7 0.12 0.66
19-2 - Physical Scientists
Job is low carbon 0.005 0.002 -0.047**  -0.002 -0.03** 0.004
(0.028) (0.023) (0.019) (0.011) (0.014) (0.008)
Observations 16,794 7,966 31,480 19,675 77,550 44,168
Low carbon ads 980 625 2,717 1,926 6,274 4,380
R? 0.23 0.84 0.2 0.74 0.16 0.73
47 - Construction and Extraction
Job is low carbon 0.037* 0.012 -0.016 -0.019 0.006 0.013
(0.019) (0.022) (0.01) (0.012) (0.009) (0.01)
Observations 92,652 25,341 334,835 207,864 642,275 314,734
Low carbon ads 3,746 1,296 16,598 11,105 31,917 17,632
R? 0.17 0.76 0.16 0.74 0.18 0.7
49 - Installation, Maintenance, and Repair
Job is low carbon 0.085%F*F  0.059%** 0.056***  0.052*** 0.091%**  0.056%**
(0.015) (0.016) (0.006) (0.007) (0.007) (0.006)
Observations 205,854 85,064 703,355 532,113 1,351,634 854,684
Low carbon ads 5,356 2,408 18,114 14,220 36,026 24,702
R? 0.13 0.73 0.12 0.69 0.13 0.66
Year FE Yes Yes Yes Yes Yes Yes
Skill vector length FE  Yes Yes Yes Yes Yes Yes
Commuting Zone FE  Yes Yes Yes Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes
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Notes: We estimate the specifications of Table 4 on each of our six main SOC groups of interest by splitting the sample.
Standard errors are clustered at the CZ level.

13-1 - Business Operations
Specialists

17-2 - Engineers
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17-2 - Engineers

47 — Construction and
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High carbon job ads wage gap

Figure G.1: Wage gap between generic jobs ads and low-/ high-carbon job ads by SOC
group and period

Notes: In the top panel, we estimate specification (1) of Table 4 on each of our six main SOC groups of interest over the
periods 2010-2012 and 2017-2019 by splitting the sample. In the bottom panel, we then complement these six estimates with
an application of specification (1) to the high-carbon wage gap estimation. Error bars indicate 95% confidence intervals.
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Table G.9: Relationship between high-carbon job and wage offer: Detailed results by
occupation

2010-2012 2017-2019 2010-2019
(1) (2) (3) (4) (5) (6)

17-2 - Engineers
Job is high carbon ~ 0.263*** (0.087*** 0.061*** 0.014 0.179%**  0.049*
(0.038)  (0.019)  (0.022)  (0.034) (0.017)  (0.026)

Observations 131,354 40,493 239,746 124,776 588,505 246,083
High carbon ads 2,522 867 2,031 1,417 7,982 3,557
R? 0.13 0.75 0.1 0.62 0.1 0.6

47 - Construction and Extraction
Job is high carbon  0.171*** 0.082 0.169%** 0.056** 0.192*%** (.05*
(0.046) (0.078) (0.024) (0.025)  (0.022) (0.027)

Observations 92,652 25,341 334,835 207,864 642,275 314,734

High carbon ads 2,701 1,038 8,421 6,232 16,057 9,494

R? 0.17 0.76 0.16 0.74 0.18 0.7
Year FE Yes Yes Yes Yes Yes Yes
Skill vector length FE = Yes Yes Yes Yes Yes Yes
Commuting Zone FE  Yes Yes Yes Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes

Notes: We estimate the specifications of Table 4 on each of our two high-carbon occupations by splitting the sample.
Standard errors are clustered at the CZ level.

4.0%

3.0%
2.0%
- I I
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Share of low carbon ads

0.0%

Decile of firm-level wage FE

Figure G.2: Firm-level share of low-carbon ads by decile of firm-level wage FEs

Notes: Firm-level FEs are recovered by regressing the log of the offered salary on firm FE, controlling for year, skill vector
length, commuting zone and SOC (3-digits) FEs. Firms are then grouped by decile of these recovered FEs, with the share
of low-carbon ads advertised by these firms computed.
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Table G.10: Returns to ad complexity

2010-2012 2017-2019 All years
(7) (8) (9)
Job is low carbon -0.027 -0.018 0.012
(0.052) (0.020) (0.016)
log(Skills count) 0.052%F%  0.065%**  0.063%**
(0.005) (0.002) (0.002)
Job is low carbon log(Skills count)  0.032* 0.019%* 0.010*
(0.019) (0.007) (0.006)
Observations 273,544 1,600,343 2,578,408
R? 0.74 0.69 0.66
Year FE Yes Yes Yes
Commuting Zone FE Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes
Firm FE Yes Yes Yes

*p < 0.1, * p < 0.05 *** p < 0.01

Notes: The estimation sample is restricted to ads where we observe the name of the advertising firm, within our six
occupations of interest. Controls include year, skill count bins, CZ, 3-digits occupation codes and firm FE — identical to

columns (3) and (6) in Table 4. Standard errors are clustered at the CZ level.
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Figure G.3: Marginal effect of job ad complexity on low-carbon wage gap by SOC group
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Notes: The specification of Table G.10 is estimated for each of our six main occupations over 2010-2019. The plotted line
represents the marginal effect of the log of skill vector length on the low carbon wage premium. Shaded areas are 95%
confidence intervals, with standard errors clustered at the CZ level.

Table G.11: Returns to ad complexity & broad skills (log count)

2010-2012  2017-2019  All years
(7) (8) (9)

Job is low carbon 0.045%#%  0.044%FF  (0.058%**
(0.017)  (0.006)  (0.006)
log(Meta-cognitive) 0.027*%**  0.036***  0.035%**
(0.005)  (0.003)  (0.003)
log(Meta-social) 0.056***  0.072%%<  0.076%**
(0.007)  (0.003)  (0.003)
log(Technical) 0.052%#%  (0.049*%FF  (.052%**

(0.006)  (0.002)  (0.002)
Job is low carbon log(Meta-cognitive)  -0.036**  -0.040*** -0.036™**
(0.016)  (0.007)  (0.006)

Job is low carbon log(Meta-social) 0.047**%  0.018%** 0.011%*
(0.013) (0.007) (0.006)
Job is low carbon log(Technical) -0.003 -0.013 -0.015%*
(0.015) (0.009) (0.006)
Observations 273,544 1,600,343 2,578,408
R? 0.74 0.69 0.67
Year FE Yes Yes Yes
Skill vector length FE Yes Yes Yes
Commuting Zone FE Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes
Firm FE Yes Yes Yes

*p < 0.1, ¥ p < 0.05, *** p < 0.01

Notes: Our Mincerian wage regression is augmented by interacting the low carbon indicator with the log of the count of
skills belonging cognitive (cognative & IT), social (social & management) or technical groupings respectively in each ad.
Controls include year, skill count bins, CZ, 3-digits occupation codes and firm FE. Standard errors are clustered at the
Commuting Zone level.
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Table G.12: Returns to ad complexity & broad skills (dummy)

2010-2012  2017-2019  All years
(7) (8) (9)

Job is low carbon 0.030 0.037%%%  0.050***
(0.018)  (0.008)  (0.008)
Technical 0.039***  (0.034***  (.038***
(0.005)  (0.002)  (0.002)
Meta-cognitive 0.018%*F*  (.022%*F*  (.022%**
(0.005)  (0.002)  (0.003)
Meta-social 0.038***  (0.045***  0.051%**

(0.006)  (0.003)  (0.003)
Job is low carbon Meta-cognitive ~ -0.007 -0.027%FF  _0.025***
(0.014)  (0.008)  (0.006)

Job is low carbon Meta-social 0.046** 0.017* 0.008
(0.018) (0.009) (0.009)
Job is low carbon Technical 0.003 -0.012 -0.013%*
(0.017) (0.010) (0.007)
Observations 273,544 1,600,343 2,578,408
R? 0.74 0.69 0.66
Year FE Yes Yes Yes
Skill vector length FE Yes Yes Yes
Commuting Zone FE Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes
Firm FE Yes Yes Yes

*p < 0.1, ¥ p < 0.05, ***p < 0.01

Notes: Our Mincerian wage regression is augmented by interacting the low carbon indicator with a dummy indicating
whether the ad contains any cognitive & IT (Meta-cognitive), social & management (Meta-social) or technical skill respec-
tively. Controls include year, skill count bins, CZ, 3-digits occupation codes and firm FE. Standard errors are clustered at
the Commuting Zone level.

Table G.13: Relationship between low-carbon job and wage offer by year

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Job is low carbon  0.070%%% 0.086*** 0.089%** 0.126™** 0.066*** 0.064*** 0.097FFF 0.046¥%* 0.043%F*F  0.047FF
(0.018)  (0.016)  (0.016)  (0.012)  (0.011)  (0.010)  (0.015)  (0.012)  (0.008)  (0.007)

*p < 0.1, % p < 0.05, ** p < 0.01

Notes: The Mincerian wage regression of Table 4 is augmented with interactions between the low carbon indicator and a
year dummy. Controls include year, skill count bins, CZ and 3-digits occupation codes. Standard errors are clustered at
the Commuting Zone level.
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Appendix H Spatial correlation

4

High carbon ads
|:| Top 15% commuting zones

Figure H.1: Spatial distribution of high-carbon vacancies in low-skilled occupations

Table H.1: Locational Gini

Low carbon ads High carbon employment High carbon ads Generic ads

Low skill 0.33 0.98 0.69 Construction & Extraction 0.23

Notes: Table H.1 presents the Locational Gini for share of low-carbon ads per CZ, share of high-carbon employ-
ment per CZ and share of high-carbon ads per CZ. The Gini locational coefficient is calculated following Gabe
and Abel (2012) using our own job ads dataset and data on employment by occupation and commuting zone from
the American Community Survey adapted from Popp et al. (2021). For any of variables presented in the four
columns listed above, indexed by k, it can be expressed as:

LocGiniy, = AJ4u

where A = A{1/[n(n =D} 320, 220 |7 —
i,7 = U.S. commuting zones (i # j)
n = Total number of CZ under ERS 2000 (709)
u = mean of the share variable k across all CZ
zijy = (1) [CZ ¥’s (j’s) share of low-carbon ads] /  [CZ ¥’s (j’s) share of all ads]
(2) [CZ i’s (j’s) share of high-carbon emp.] / [CZ #’s (j’s) share of all emp.]
(3) [CZ i’s (j’s) share of high-carbon ads] /  [CZ @’s (j’s) share of all ads]
(4) [CZ i’s (j’s) share of SOC 47 ads] /  [CZ ¥’s (j’s) share of all ads]
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Table H.2: Correlation between the share of low-carbon ads and high-carbon employ-
ment

Low skill

Unweighted Weighted by ad count Weighted by population

log(1 + sZ?fz) 0.178%** 0.068*** 0.074%**
(0.037) (0.019) (0.023)

Observations 681 681 679

R? 0.13 0.022 0.023

Notes: Table H.2 presents estimates of 8, 7" in log(1 + sjc,c2) = Bl 7, log(1+ 8777 ) 4+ ecz. Sic,c. is the average share

of low-carbon ads in low skilled occupations between 2010 and 2019 in each CZ. sZ’ZfZ is the average share of high-carbon
employment in low skilled occupations between 2010 and 2017 in each CZ, according to the American Community Survey
(ACS). Column (1) presents unweighted results, while column (2) provides results weighted by the average number of job
ads between 2010 and 2019 in each CZ and column (3) weighted by the average population per CZ between 2010 and 2019.
*HkFE ¥ indicate statistical significance at the 0.01, 0.05, and 0.1 levels, respectively. Standard errors clustered by CZ are

provided in parentheses.

Table H.3: Correlation between the share of low-carbon ads and high-carbon ads

Low skill

Unweighted Weighted by ad count Weighted by population

log(1+ spd ) 0.241%%* 0.168%** 0.189%**
(0.062) (0.045) (0.050)

Observations 650 650 646

R? 0.097 0.028 0.033

Notes: Table H.3 is identical to Table H.2, substituting the share of high carbon employment (SZTC"ZZ) for the share of high

ads )

carbon ads (sj2°,,

Table H.4: Correlation between the share of low-carbon ads and annual personal income

Low skill

Unweighted Weighted by ad count Weighted by population

log(inc,.,) 0.009%*** 0.002%* 0.002**
(0.001) (0.001) (0.001)

Observations 679 679 679

R? 0.075 0.026 0.025

Notes: Table H.4 presents estimates of ﬁllcnc in log(1 + sic,cz) = ﬁfzw log(incez) 4 €cz. Sic,cz is the average share of low-
carbon ads in low skilled occupations between 2010 and 2019 in each CZ. inc., is the mean income per capita between 2010
and 2019 in each CZ. Column (1) presents unweighted results, while column (2) provides results weighted by the average
number of job ads between 2010 and 2019 in each CZ and column (3) weighted by the average population per CZ between
2010 and 2019. *** ** * indicate statistical significance at the 0.01, 0.05, and 0.1 levels, respectively.Standard errors
clustered by CZ are provided in parentheses.
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Table H.5: Correlation between the share of high-carbon ads and annual personal income

Low skill

Unweighted Weighted by ad count Weighted by population

log(inc,.,) 0.007*** -0.001* -0.001***
(0.003) (0.000) (0.000)

Observations 648 648 648

R? 0.021 0.0055 0.014

Notes: Table H.5 presents estimates of ,Bfféc in log(1l + She,ez) = B,il’éc log(incez) + €cz. She,c is the average share of
high-carbon ads in low skilled occupations between 2010 and 2019 in each CZ. incc, is the mean income per capita between
2010 and 2019 in each CZ. Column (1) presents unweighted results, while column (2) provides results weighted by the
average number of job ads between 2010 and 2019 in each CZ and column (3) weighted by the average population per CZ
between 2010 and 2019. *** ** * indicate statistical significance at the 0.01, 0.05, and 0.1 levels, respectively. Standard
errors clustered by CZ are provided in parentheses.
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Figure H.2: Distribution of spatial correlation between pairs of 6-digits Construction
and Extraction occupations (47.0000)

Notes: Each panel presents the distribution of the pair-wise spatial correlation between the share of ads in any two
occupations at the SOC 6-digits level within SOC group 47, Construction and Extraction, at the CZ level. The vertical
dashed line represents the correlation between the shares of low-carbon ads and high carbon employment within SOC 47,
at the CZ level. From left to right, the ad shares are unweighted, weighted by ad count and weighted by population at the
CZ level resp. — the spatial correlation of interest lies at the 89tP, 834 and 84" percentile resp.
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Table H.6: Top low-carbon job identifiers in low-skilled occupations by state

State Most freq. low carbon  2"¢ most freq. 374 most freq.
Alabama Insulation Emissions Testing Energy Conservation
Alaska Insulation Public Transit Systems Retrofitting

Arizona Insulation Energy Conservation Solar Energy
Arkansas Insulation Pollution Control Equipment Efficiency
California Insulation Solar Sales Solar Energy
Colorado Insulation Energy Conservation Renewable Energy
Connecticut Insulation Solar Sales Solar Energy
Delaware Insulation Solar Sales Solar Energy
Florida Insulation Energy Conservation Retrofitting

Georgia Insulation Energy Conservation Energy Efficiency
Hawaii Energy Conservation Insulation Efficient Transportation
Idaho Insulation Clean Energy Insulation Installation
Illinois Insulation Energy Efficiency Energy Conservation
Indiana Insulation Equipment Efficiency Energy Efficiency
Towa Insulation Ethanol Wind Turbines
Kansas Insulation Wind Turbines Wind Power
Kentucky Insulation Energy Conservation Retrofitting
Louisiana Insulation Energy Conservation Energy Efficiency
Maine Insulation Renewable Energy Wind Turbines
Maryland Insulation Energy Conservation Energy Efficiency
Massachusetts  Insulation Energy Conservation Energy Efficiency
Michigan Insulation Energy Conservation Energy Efficiency
Minnesota Insulation Energy Conservation Energy Efficiency
Mississippi Insulation Energy Efficiency Retrofitting
Missouri Insulation Energy Conservation Energy Efficiency
Montana Insulation Insulation Installation — Geothermal
Nebraska Insulation Ethanol Wind Turbines
Nevada Energy Conservation Insulation Solar Sales

New Hampshire Insulation Insulation Installation  Solar Sales

New Jersey Insulation Solar Sales Solar Energy

New Mexico Insulation Solar Energy Wind Turbines

New York Insulation Energy Efficiency Solar Sales

North Carolina  Insulation Energy Efficiency Energy Conservation
North Dakota Insulation Wind Turbines Public Transit Systems
Ohio Insulation Retrofitting Energy Conservation
Oklahoma Insulation Wind Turbines Wind Power

Oregon Insulation Energy Efficiency Energy Conservation
Pennsylvania Insulation Energy Conservation Energy Efficiency
Rhode Island Insulation Energy Efficiency Solar Sales

South Carolina  Insulation Energy Conservation Energy Efficiency
South Dakota Insulation Ethanol Wind Turbines
Tennessee Insulation Energy Conservation Retrofitting

Texas Insulation Energy Conservation Retrofitting

Utah Energy Conservation Insulation Energy Efficiency
Vermont Insulation Energy Efficiency Energy Conservation
Virginia Insulation Energy Conservation Energy Efficiency
Washington Insulation Retrofitting Energy Efficiency
West Virginia Insulation Energy Efficiency Insulation Installation
Wisconsin Insulation Energy Conservation Energy Efficiency
Wyoming Efficient Transportation Insulation Wind Turbines
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Appendix I Robustness on the identification of low-

carbon skills

Table I.1: Sensitivity of low-carbon skills set to selection hyper-parameters

Sensitivity yielding additional low-carbon skills (list of low-carbon skills added in a given sensitivity test)

a) Main specification

See main list of low carbon skills in Table B.5

b) Frequency threshold 10 percentile

points less strict

Biocatalytic Processes, Bioness, Bioremediation, Biosafety, Bioswales, Brownfield Re-
development, Brownfields, Catalysis, Coolant Systems, Corrective Containment, Crop
Fertilization, Fertilizers, Government Incentives, Government Rebates, Heating - Cool-
ing Systems, Heating Systems, Pipe Insulation, Plumbing Pipe Insulation, Rainwater
Harvesting, Sediment Extraction, Sediment Removal, Sediment Sampling, Sedimenta-
tion Control, Sedimentation Rate, Water Conservation, Water Reuse, Water Supply
and Demand, Water Use Reduction

¢) Keyword threshold 10% less strict

Wastewater Lift Station Design, Wastewater Treatment Plant Design

d) Semantic threshold top 1.5%

Advanced Technologies, Clean Technology, Clean Technology Investment Opportuni-
ties, Cleantech Products, Cleantech Solutions, Cost Efficiency, Domestic Transporta-
tion Services, Efficiency Analyses and Testing, Efficiency Estimation, Financial Effi-
ciency, International Transportation Services, Renewable Sales, Telematics, Tortois-
eSVN, Transportation Contracts, Transportation Finance, Transportation Sourcing,
Vantive, Vehicle Systems, Vvandt, Wind Energy Project Management, Wind En-
ergy Project Planning, Wind Project Construction, Wind Project Development, Wind

Project Engineering

e) Semantic clustering threshold 10%

less strict

Application Performance Management, Biofuels Production Adjustment, Biofuels Pro-
duction Management, Conservation Services, Ecological Services, Emissions Analyzer
Operation, Emissions Analyzers, Energy Saving Plumbing Systems, Equipment Design,
Equipment Development, Equipment Implementation, Facility and Site Construction
Layout, Facility Design, Facility Layout, Facility Planning Analysis, Flexible fuel ve-
hicles (FFV), Heavy Weather Operations, Low Voltage Lighting, Performance Im-
provement, Performance-related conditions, Railroad Law, Railroad Operating Rules,

Storage as a Service, Water Saving Plumbing Systems

f) Including ‘grey’ skill clusters

Decentralized Wastewater Management, Natural Resources, Nuclear Energy, Nu-
clear Industry Knowledge, Nuclear Procurement, Nuclear Safety, Soil Conservation,
Soil Management, Soil Protection, Wastewater Collection, Wastewater Distribution,
Wastewater Engineering, Wastewater Process Engineering, Wastewater Processing,
Wastewater Purification, Wastewater Treatment
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Table 1.2: Sensitivity of low-carbon skills set to selection hyper-parameters (cont.)

Sensitivity yielding fewer low-carbon skills (list of low-carbon skills removed in a given sensitivity test)

g) Frequency threshold Benefits Research, Biofuel Product Development, Biofuel Production,
10 percentile points more Biofuels Applications, Biofuels Development, Biofuels Extraction, Bio-
strict fuels Plant Safety, Biofuels Processing, Biofuels Processing Equipment,
Biofuels Research, Biofuels Research and Development, Biofuels Technol-
ogy, Cost-Benefit Studies, Electric Vehicle, Ethanol, Ethanol Distillation,
Ethanol Recovery Methods, Industrial Ecology, Optical Data Storage, Soil
Tillers, Storage Management Technologies, Sustainable Materials, Tillage

h) Keyword threshold 10%  Abatement Projects, Air Pollution Control, Air Quality Control, Air

more strict Quality Regulations, Air Quality Remediation, Air Quality Standards,
Alternative Energy Design, Alternative Energy Evaluation, Benefits Re-
search, Bicycle Planning, Bike Industry Knowledge, Biofuel Product De-
velopment, Biofuel Production, Biofuels Applications, Biofuels Develop-
ment, Biofuels Extraction, Biofuels Plant Safety, Biofuels Processing, Bio-
fuels Processing Equipment, Biofuels Research, Biofuels Research and De-
velopment, Biofuels Technology, Carbon Accounting, Carbon Asset Man-
agement, Carbon Management, Carbon Offsets, Carbon Reduction, Cost-
Benefit Studies, Electric Vehicle, Emission Reduction Projects, Emissions
Standards, Ethanol, Ethanol Distillation, Ethanol Recovery Methods,
Heavy Rail, Heavy Rail Transit Systems, High Speed Rail, Industrial
Ecology, Light Rail, Light Rail Transit Systems, Low Carbon Projects,
Low Carbon Solutions, Optical Data Storage, Pollution Control, Pollu-
tion Control Equipment, Pollution Control Systems, Pollution Preven-
tion, Pollution Regulation, Public Transit Operations, Public Transit
Systems, Public Transportation System, Rail Equipment Maintenance,
Rail Equipment Repair, Rail Industry Knowledge, Rail Operations, Rail
Safety, Rail-Track Laying, Railroad Conducting, Railroad Design, Rail-
road Engineering, Railroad Safety, Railway Signaling, Railway Systems,
Smoke Emissions Reduction, Soil Tillers, Storage Management Technolo-
gies, Sustainable Materials, Tillage, Transit Systems, Wind Commission-
ing, Wind Consultation, Wind Energy Industry Knowledge, Wind Energy
Operations, Wind Energy Operations Management, Wind Field Opera-
tions, Wind Generator Assembly, Wind Turbine Control System, Wind
Turbine Equipment, Wind Turbine Equipment Testing, Wind Turbine
Fabrication, Wind Turbine Performance Improvement, Wind Turbine Ser-
vice

i) Semantic threshold top  Air Quality Regulations, Air Quality Standards, Cooling Efficiency, Emis-

0.5% sions Standards, Energy Cost Reduction, Energy Supply Side Savings,
Heating Efficiency, Insulation Efficiency, Streetcars, Trams, Wind Com-
missioning, Wind Consultation, Wind Field Operations

j)  Semantic clustering Bike Industry Knowledge, Electricity Regulation, Emissions Inspection,

threshold 10% more strict Emissions Testing, Energy Law, Energy Loss Calculation, Ethanol Dis-
tillation, Ethanol Recovery Methods, Mitigation Projects, Performance
Yield, Photovltaic Mounting Solutions, Photovoltiac (PV) Module Eval-
uation, Pollution Control Equipment, Pollution Control Systems, Pub-
lic Transit Operations, Public Transit Systems, Public Transportation
System, Smoke Emissions Reduction, Spray Foam (Insulation), Storage
Management Technologies, Transit Systems
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Table 1.3: Sensitivity of low-carbon vacancy shares to low-carbon skills selection

a) b) c) d) ) f) g) h) i) )

All occupations 0.87% 1.12% 0.85% 0.94% 0.98% 1.13% 0.85% 0.77% 0.86% 0.81%
High-skilled occupations 0.30% 0.35% 0.29% 0.34% 0.36% 0.41% 0.29% 0.27% 0.30% 0.29%
Low-skilled occupations  0.57% 0.77% 0.55% 0.61% 0.61% 0.72% 0.55% 0.50% 0.56% 0.53%

Table I.4: Sensitivity of low-carbon skills premium to low-carbon skills selection

a) b) ¢) d) e) f) g) h) i) j)
13-1 - Business 1.561%%*  1.489%** 1 591*** 1. 85*%*¥* 1. 797*¥**k 1 536%**F 1.59FFF 1 .8R3FFF 1 56TFFF  1.644%F*
Operations Specialists (0.228)  (0.211)  (0.232)  (0.205)  (0.207)  (0.201)  (0.232)  (0.242)  (0.229)  (0.237)
17-2 - Engineers 2.623*¥*F*  2.601***  2.667FF*  2.472¥Kx Q. 722¥KK D 24GFK* D GTHFR D TIHFKE D 634%*F*  2.666FF*

(0.157) (0.141) (0.159) (0.141) (0.118) (0.13) (0.16) (0.173) (0.157) (0.159)
17-3 - Engineering and 2.953*F¥*  Q TTIFFE  2.991F*F* 2 905F*FF 3 101FF*  2.636FF*  2.988*F** 3 102***  2.969*F**  3.045%**
Mapping Technicians (0.227)  (0.184)  (0.231)  (0.209)  (0.187)  (0.173)  (0.231)  (0.271)  (0.231)  (0.237)
19-2 - Physical 2.379%F** 2 46RF** 2 ZTIFHF* 2.396F**  2.412FF* 9 532%FKK 9 3TFHK 2 146%F*  2.419%FF* 2 35H1F**
Scientists (0.23) (0.222) (0.232) (0.225) (0.231) (0.167) (0.232) (0.23) (0.231) (0.235)
47 - Construction 2.693**%*  2.612%¥*F*  2.696*** 2.705%*F* 2.731FF* 2. 719%¥k*  2.696**F*  2.701*FF*  2.694**F*  2.696***
and Extraction (0.24) (0.204) (0.242) (0.239) (0.233) (0.214) (0.242) (0.251) (0.241) (0.236)
49 - Installation 2.618%** 2 G74*** 2 669FF*  2.490%** 9 FRIFHRK 9 GITHFK  2.669FFF  2.THFHK D G61FHFK 2. T44%**
Maintenance, and Repair (0.424) (0.346) (0.432) (0.366) (0.404) (0.386) (0.432) (0.449) (0.429) (0.453)
Firm FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes




Table 1.5: Sensitivity of low-carbon wage premium to low-carbon skills selection

€8

2010-2019
(a) (b) (c) (d) () (f) () (h) (i) ()
Job is low carbon 0.037#F%  0.014%%F  0.035%F*  0.035%**  0.040***  0.027***  0.035%**  0.041%*F*  0.038%*F*  (.036%**
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Observations 2,578,408 2,578,408 2,578,408 2,578,408 2,578,408 2,578,408 2,578,408 2,578,408 2,578,408 2,578,408
R? 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Skill vector length FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Commuting Zone FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
SOC (3-digits) FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

*p < 0.1, ¥ p < 0.05, ¥ p < 0.01
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Figure 1.2: Sensitivity of returns to complexity to low-carbon skills selection
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Appendix J Robustness: benchmarking the skill-based

measure against task-based classifications

J.1 Methodology

Task-based benchmark. Following Vona et al. (2018), let g5 denote the greenness of
six—digit occupation k, defined as the share of O*NET specific tasks tagged “green” in
that occupation. Aggregating g, with BLS employment weights yields an economy-wide
employment share of green jobs, as employed in the present article and widely in the
literature (e.g. Elliott and Lindley, 2017; Vona et al., 2019).

Replication of Vona et al. (2018). We replicate the procedure described by Vona
et al. (2018) exactly to obtain 6-digits SOC code-level green task shares. In particular, we
take care in applying the corrections identified by Vona et al. (2018) in their Appendix
Table A1. We then apply combine these SOC code-level green shares with the same BLS
employment weights used throughout the rest of the paper to obtain a task-based green
job share of 3.2% (see J.1).

Low-carbon restricted task list. Many O*NET green tasks concern activities (waste,
remediation, water) that do not directly lower greenhouse-gas emissions, and therefore fall
outside the scope of our low-carbon skill identification algorithm. We thus hand-coded a
subset of tasks that unambiguously target mitigation technologies (renewables, efficiency,
electrification, carbon accounting). Applying the same steps to this “low-carbon task”
subset produces a more comparable task-based benchmark, and yields a low-carbon job
share of 1.5%.

Skill-based measure Section 2 of the paper sets out how 389 low-carbon skills are
identified with NLP techniques; a vacancy is low-carbon if it contains at least one of these
skills. As mentioned in the main body of the article, our approach yields a low-carbon
job share of 0.9%.

J.2 Correlation between the task-based and skill-based approaches
Figure J.1 plots, for the 12 two-digit SOC groups with non-zero O*NET green task shares,
the share of low-carbon ads against the task-based greenness index. Both panels reveal
positive and statistically significant correlations, of 0.63 and 0.59 respectively. The in-
tercept remains close to zero, indicating the absence of systematic bias in our skill-based

methodology.
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Figure J.1: Skill- vs. task-based low-carbon employment shares, SOC two-digit level
(2010-19)

Table J.1: Employment share of green / low-carbon jobs, 2010-19 average

Scope Measure Definition Share
Green Task-based  Full O*NET green task list 3.20 %
Low-carbon Task-based  Restricted low-carbon task list 1.50 %
Low-carbon  Skill-based ~ Ad with > 1 low-carbon skill 0.90%

87



J.3 Aggregate comparison

Table J.1 shows that the broad task-based estimate yields a green employment share
of (3.2%), consistent with earlier studies. Restricting the task universe to mitigation
activities halves that estimate to 1.5 %, bringing it much closer to the 0.9 % delivered by
our skill-level approach. The convergence supports the view that our NLP classification

captures essentially the same set of jobs, while discarding non-mitigation activities.

This comparison thus validates the robustness of both our methodological contribution

and of our estimates of low-carbon employment shares.

See O*NET release 26.1; mappings to 2010 SOC codes are described in Appendix B of Vona et al. (2018).
SOC groups with zero green tasks in the O*NET classification are dropped; the shares are obtained within
each SOC group from SOC 6-digit shares weighted by BLS employment.
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